已知為等差數(shù)列的前項(xiàng)和,.
⑴求;
⑵求
⑶求.

(1);(2);
(3).

解析試題分析:先由通項(xiàng)公式與的關(guān)系式,求出數(shù)列的通項(xiàng)公式,注意檢驗(yàn)的情形是否成立,由此得出,當(dāng)時(shí),,當(dāng)時(shí),.(1),代入即可計(jì)算;(2),代入即可解決;(3)需要對(duì)進(jìn)行分類(lèi),當(dāng)時(shí),,當(dāng)時(shí),,代入,問(wèn)題得以解決.
試題解析:,當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),,.
,得,當(dāng)時(shí),;當(dāng)時(shí),.
;


⑶當(dāng)時(shí),
當(dāng)時(shí),

所以.
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.等差數(shù)列的前項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,且,
(1).求數(shù)列的通項(xiàng)公式;
(2).若成等比數(shù)列,求正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)記的前項(xiàng)和為,若成等比數(shù)列,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,其公差d不為0,的等差中項(xiàng)為11,且,令,數(shù)列的前n項(xiàng)和為.
(1)求;
(2)是否存在正整數(shù)m,n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an},,,記,,
,若對(duì)于任意,A(n),B(n),C(n)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,其前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4,
(1)求{an}的通項(xiàng)公式;
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案