(文)一個多面體的直觀圖及三視圖如圖所示:(其中M、N分別是AF、BC的中點).

(Ⅰ)求證:MN∥平面CDEF;

(Ⅱ)求多面體A-CDEF的體積.

答案:
解析:

  解:由三視圖可知,該多面體是底面為直角三角形的直三棱住ADE-BCF,  2分

  且AB=BC=BF=2,DE=CF=2

  ∴∠CBF=  4分

  (Ⅰ)取BF中點G,連MG、NG,由M、N分別為AF、BC的中點可得,NG∥CF,MG∥EF,  6分

  ∴平面MNG∥平面CDEF.

  ∴MN∥平面CDEF.  8分

  (Ⅱ)取DE的中點H.

  ∵AD=AE,∴AH⊥DE,在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,面ADE∩面CDEF=DE.

  ∴AH⊥平面CDEF.  10分

  ∴多面體A-CDEF是以AH為高,以矩形CDEF為底面的棱錐,在△ADE中,AH=,

  ∴棱錐A-CDEF的體積為  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個多面體的直觀圖如圖a所示,它的正視圖和俯視圖都是邊長為2的正方形,左視圖如圖b所示.已知M、N分別是AF、BC的中點.
(1)求證:MN∥平面CDEF;
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.
(1)在AD上(含A、D端點)確定一點P,使得GP∥平面FMC;
(2)一只蒼蠅在幾何體ADF-BCE內(nèi)自由飛翔,求它飛入幾何體F-AMCD內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)一個多面體的直觀圖,前視圖(正前方觀察),俯視圖(正上方觀察),側(cè)視圖(左側(cè)正前方觀察)如圖所示.
(1)求A1A與平面ABCD所成角的大小及面AA1D1與面ABCD所成二面角的大小;
(2)求此多面體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年德州市質(zhì)檢文)(12分)一個多面體的直觀圖及三視圖如圖所示(其中M、N分別是AF、BC的中點)

   (1)求證:MN//平面CDEF;

   (2)求多面體A―CDEF的體積.

 

查看答案和解析>>

同步練習(xí)冊答案