7.若直線y=x-b與曲線$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])有兩個不同的公共點,則實數(shù)b的取值范圍為( 。
A.(2-$\sqrt{2}$,1]B.(2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.[-1,$\sqrt{2}$-2)

分析 求出曲線的普通方程,由公共點個數(shù)可知直線與圓相交,求出圓心到直線的距離d,令d<r解不等式得出b的范圍.

解答 解:曲線$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])的普通方程為(x-2)2+y2=1(y≥0).
∴曲線的圓心為A(2,0),半徑為1.
直線y=x-b的一般方程為x-y-b=0.
∵曲線$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])有兩個不同的公共點,
∴圓心A(2,0)到直線l的距離d<1.
∴$\frac{|2-b|}{\sqrt{2}}$<1,解得2-$\sqrt{2}$<b<2+$\sqrt{2}$.
過(1,0)時,b=1,
∴實數(shù)b的取值范圍是2-$\sqrt{2}$<b≤1.
故選A.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等差數(shù)列{an}的首項為4,公差為2,前n項和為Sn,若Sk-ak+5=44(k∈N*),則k的值為( 。
A.6B.7C.8D.7或-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求向量$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)是定義在[5-2a,a]上的奇函數(shù),且當x∈[-5,0)時,f(x)=-x (4-x).
(1)f(x)的解析式;
(2)求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}({a}_{n}+n)(n為奇數(shù))}\\{2{a}_{n}-n(n為偶數(shù))}\end{array}\right.$,設(shè)bn=a2n+1+4n-2,n∈N*,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2},B={x|-2<x<2},則A∩B=( 。
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.下列命題
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}•\overrightarrow$<0”;
④設(shè)有四個函數(shù)y=x-1,y=${x^{\frac{1}{2}}}$,y=x2,y=x3其中在(0,+∞)上是增函數(shù)的函數(shù)有3個.
真命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}滿足Sn+an=2n+1(n∈N*),其中Sn表示數(shù)列{an}的前n項和.
(Ⅰ)求出a1,a2,a3,并推測數(shù)列{an}的表達式;
(Ⅱ)用數(shù)學歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知tanx=2,則$\frac{3cosx+2sinx}{4cosx-5sinx}$=-$\frac{7}{6}$.

查看答案和解析>>

同步練習冊答案