分析 根據(jù)題意,對(duì)函數(shù)f(x)求導(dǎo)可得f′(x)=cosx-sinx,結(jié)合題意可得sin x+cos x=2(cosx-sinx),變形可得tanx=$\frac{1}{3}$,由同角三角函數(shù)的基本關(guān)系式分析可得$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{2ta{n}^{2}x+1}{1-tanx}$,將tanx=$\frac{1}{3}$代入計(jì)算可得答案.
解答 解:根據(jù)題意,函數(shù)f(x)=sin x+cos x,則f′(x)=cosx-sinx,
又由f(x)=2f′(x),即sin x+cos x=2(cosx-sinx),
變形可得cosx=3sinx,即tanx=$\frac{1}{3}$,
$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{2si{n}^{2}x+co{s}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{2ta{n}^{2}x+1}{1-tanx}$,
又由tanx=$\frac{1}{3}$,
則$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{2si{n}^{2}x+co{s}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{2ta{n}^{2}x+1}{1-tanx}$=$\frac{11}{6}$;
故答案為:$\frac{11}{6}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值以及導(dǎo)數(shù)的計(jì)算,關(guān)鍵是對(duì)$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$的化簡(jiǎn)變形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{21}{58}$ | B. | $\frac{12}{29}$ | C. | $\frac{21}{64}$ | D. | $\frac{7}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0或2 | B. | 0或2或3或4 | C. | 0或2或4 | D. | 0或1或2或3或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $9+4({\sqrt{2}+\sqrt{5}})c{m^2}$ | B. | $10+2({\sqrt{2}+\sqrt{3}})c{m^2}$ | C. | $11+2({\sqrt{2}+\sqrt{5}})c{m^2}$ | D. | $11+2({\sqrt{2}+\sqrt{3}})c{m^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com