【題目】如圖所示,在棱長為2cm的正方體ABCD﹣A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.
【答案】解:取AB、C1D1的中點M、N,連結(jié)A1M、MC、CN、NA1 .
由于A1N∥PC1∥MC且A1N=PC1=MC,
∴四邊形A1MCN是平行四邊形.
又∵A1N∥PC1 , A1M∥BP,A1N∩A1M=A1 ,
PC1∩BP=P,
∴平面A1MCN∥平面PBC1
因此,過A1點作與截面PBC1平行的截面是平行四邊形.
又連結(jié)MN,作A1H⊥MN于H,由于A1M=A1N=,MN=2,
則AH=.
∴
故 S平行四邊形A1MCN=2=2(cm2).
【解析】根據(jù)線面平行的定義和性質(zhì)可以證明與截面PBC1平行的截面是平行四邊形.然后求平行四邊形的面積即可.
【考點精析】通過靈活運用平面與平面平行的性質(zhì),掌握如果兩個平面同時與第三個平面相交,那么它們的交線平;可以由平面與平面平行得出直線與直線平行即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月14日,“共享單車”終于來到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準(zhǔn)備對該項目進行考核,考核的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于,否則該項目需進行整改,該部門為了了解市民對該項目的滿意程度,隨機訪問了使用共享單車的名市民,并根據(jù)這名市民對該項目滿意程度的評分(滿分分),繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于分的市民中隨機抽取人進行座談,求這人評分恰好都在的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對函數(shù) ,有下列說法:
①f(x)的周期為4π,值域為[﹣3,1];
②f(x)的圖象關(guān)于直線 對稱;
③f(x)的圖象關(guān)于點 對稱;
④f(x)在 上單調(diào)遞增;
⑤將f(x)的圖象向左平移 個單位,即得到函數(shù) 的圖象.
其中正確的是 . (填上所有正確說法的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列四個正方體圖形中,A、B為正方體的兩個頂點,M、N、P分別為其所在棱的中點,能得出AB∥平面MNP的圖形序號是( 。
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在海島上有一座海拔的山峰,山頂設(shè)有一個觀察站,有一艘輪船按一固定方向做勻速直線航行,上午時,測得此船在島北偏東、俯角為的處,到時,又測得該船在島北偏西、俯角為的處.
(1)求船的航行速度;
(2)求船從到行駛過程中與觀察站的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點F的位置,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家為了鼓勵節(jié)約用水,實行階梯用水收費制度,價格參照表如表:
用水量(噸) | 單價(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過20噸不超過35噸的部分按3元/噸收費 |
35以上 | 4 | 超過35噸的部分按4元/噸收費 |
(1)若小明家10月份用水量為30噸,則應(yīng)繳多少水費?
(2)若小明家10月份繳水費99元,則小明家10月份用水多少噸?
(3)寫出水費y與用水量x之間的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com