【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;

2)已知點是曲線上的任意一點,求點到直線的距離的最大值和最小值.

【答案】(1)為圓心在原點,半徑為2的圓, (2)取到最小值為最大值為

【解析】試題分析:1利用三角恒等式消元法消去參數(shù)可得曲線的普通方程,再利用放縮公式可得曲線方程,從而可判定是哪一種曲線,利用極坐標護互化公式可得的方程化為極坐標方程;2利用的參數(shù)方程設出點的坐標,利用點到直線距離公式輔助角公式及三角函數(shù)的有界性可得結果.

試題解析:(1因為曲線的參數(shù)方程為為參數(shù)),

因為,則曲線的參數(shù)方程

所以的普通方程為

所以為圓心在原點,半徑為2的圓.

所以的極坐標方程為

2)解法:直線的普通方程為

曲線上的點到直線的距離

時, 取到最小值為

時, 取到最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個地區(qū)共有5個鄉(xiāng)鎮(zhèn),共30萬人,其人口比例為32523,從這30萬人中抽取一個300人的樣本分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關,則應采取什么樣的抽樣方法?并寫出具體過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個數(shù)字被污損.

(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.

(II)節(jié)目的播出極大激發(fā)了觀眾隨機統(tǒng)計了4位觀眾的周均學習成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示)

由表中數(shù)據(jù)分析,x,y呈線性相關關系,試求線性回歸方程,并預測年齡為60歲觀眾周均學習成語知識的時間.

參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側棱,點分別為棱的中點, 的重心為,直線垂直于平面.

1)求證:直線平面;

2)求二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;

2)已知點是曲線上的任意一點,求點到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:a>b>0的左、右焦點分別為F1,F2,P為橢圓上一點(在x軸上方),連結PF1并延長交橢圓于另一點Q,設λ

(1)若點P的坐標為1,PQF2的周長為8,求橢圓C的方程;

(2)若PF2垂直于x軸,且橢圓C的離心率e[,],求實數(shù)λ的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位計劃在一水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量年入流量:一年內上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.

(1)求未來3年中,設表示流量超過120的年數(shù),求的分布列及期望;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系

年入流量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求證:平面ABC平面ACD;

(2)EAB中點,求點A到平面CED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A=, =.

(Ⅰ)試求tanC的值;

(Ⅱ)若a=5,試求△ABC的面積.

查看答案和解析>>

同步練習冊答案