【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點(diǎn)分別為棱的中點(diǎn), 的重心為,直線垂直于平面.

1)求證:直線平面;

2)求二面角的余弦.

【答案】(1)證明見解析;(2) .

【解析】試題分析:(1)證線面平行,直接找線線平行即可,構(gòu)造平行四邊形,證明平行于DE,即可得到線線平行,進(jìn)而得到線面平行(2)建系,分別求出兩個(gè)半平面的法向量,根據(jù)公式得到法向量的夾角,從而得到二面角的大小。

(1) 連結(jié) ,則在三角形為中位線,于是,

因?yàn)?/span>中點(diǎn),所以平行且等于. 所以在平行四邊形中, 平行于

因?yàn)?/span>在平面 上,所以平行于平面

(2)分別以軸建立空間直角坐標(biāo)系

設(shè),則

因?yàn)?/span>垂直于平面,所以有

解得,所以

的法向量,面的法向量為

所以

結(jié)合圖形知,二面角的預(yù)先為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些缺損按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示.

(1)作出散點(diǎn)圖;

(2)如果y與x線性相關(guān),求出回歸直線方程;

(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

14

12

8

每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè))

11

9

8

5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)將函數(shù)的圖像(縱坐標(biāo)不變)橫坐標(biāo)伸長(zhǎng)為原來的倍,再把整個(gè)圖像向左平移個(gè)單位長(zhǎng)度得到的圖像.當(dāng)時(shí),求函數(shù)的值域;

(2)若函數(shù)內(nèi)是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抽查100袋洗衣粉,測(cè)得它們的重量如下(單位:g):

494 498 493 505 496 492 485 483 508

511 495 494 483 485 511 493 505 488

501 491 493 509 509 512 484 509 510

495 497 498 504 498 483 510 503 497

502 511 497 500 493 509 510 493 491

497 515 503 515 518 510 514 509 499

493 499 509 492 505 489 494 501 509

498 502 500 508 491 509 509 499 495

493 509 496 509 505 499 486 491 492

496 499 508 485 498 496 495 496 505

499 505 496 501 510 496 487 511 501

496

(1)列出樣本的頻率分布表:

(2)畫出頻率分布直方圖,頻率分布折線圖;

(3)估計(jì)重量在[494.5,506.5]g的頻率以及重量不足500g的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,橢圓 的上焦點(diǎn)為,橢圓的離心率為 ,且過點(diǎn)

1求橢圓的方程;

2設(shè)過橢圓的上頂點(diǎn)的直線與橢圓交于點(diǎn)不在軸上,垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)任意 有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于, 的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的為關(guān)于實(shí)數(shù), 的廣義距離

)非負(fù)性: ,當(dāng)且僅當(dāng)時(shí)取等號(hào);

)對(duì)稱性: ;

)三角形不等式: 對(duì)任意的實(shí)數(shù)均成立.

給出三個(gè)二元函數(shù):①;,

則所有能夠成為關(guān)于, 的廣義距離的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等腰梯形中(如圖1),, 為線段的中點(diǎn), 為線段上的點(diǎn), ,現(xiàn)將四邊形沿折起(如圖2).

圖1 圖2

⑴求證: 平面

⑵在圖2中,若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案