17.若f(x)=${e}^{-\frac{1}{x}}$,則$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2e-1

分析 利用導(dǎo)數(shù)的定義對所求變形,得到實際所求,然后求已知函數(shù)的導(dǎo)數(shù)

解答 解:$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2$\underset{lim}{\frac{1}{t}→0}\frac{f(1-\frac{2}{t})-f(1)}{\frac{-2}{t}}$=-2f'(1),
又f(x)=${e}^{-\frac{1}{x}}$,所以f'(x)=(${e}^{-\frac{1}{x}}$)'=$\frac{1}{{x}^{2}}{e}^{-\frac{1}{x}}$,
所以f'(1)=e-1
故答案為:-2e-1

點評 本題考查了導(dǎo)數(shù)的定義的運用以及復(fù)合函數(shù)求導(dǎo);屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(1-2a)^{x},x≤1}\\{lo{g}_{a}x+\frac{1}{3},x>1}\end{array}\right.$,對任意實數(shù)x1,x2,當x1≠x2時,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則a的取值范圍是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知平行六面體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,側(cè)棱AA1的長為2,∠A1AB=∠A1AD=120°.
求:(1)直線A1C和BB1的夾角的余弦值;
(2)設(shè)|A1C|=a,|A1B|=b,|A1D|=c請設(shè)計一個算法,當輸入實數(shù)a,b,c,要求輸出這三個數(shù)中最大的數(shù),請寫出算法并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定義域為A,函數(shù)g(x)=($\frac{1}{2}$)x,(-1≤x≤0)的值域為B.
(1)求A∩B;
(2)若C={x|a≤x≤2a-1},且C∩B=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“|x|<2”是“x2-x-6<0”的( 。
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分而不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.兩圓x2+y2-1=0與x2+y2+3x+9y+2=0的公共弦長為(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{3\sqrt{10}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,小方格是邊長為1的正方形,一個幾何體的三視圖如圖,則原幾何體的體積為( 。
A.$\frac{32π}{3}$B.64+$\frac{32π}{3}$C.16πD.64+$\frac{256π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.數(shù)列{an}前n項和為Sn,且an+Sn=-2n-1(n∈N*).
(1)證明數(shù)列{an+2}為等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)若${b_n}={log_2}\frac{1}{{{a_n}+2}}$,證明:$\sum_{k=1}^n{\frac{1}{{{b_k}{b_{k+1}}}}}<1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{{2sin\frac{x}{2}cos\frac{x}{2}-1}}{{\sqrt{3-2cosx-4sin\frac{x}{2}cos\frac{x}{2}}}}$(0≤x≤2π)的值域是 ( 。
A.[-$\frac{{\sqrt{2}}}{2},0$]B.[-1,0]C.[-$\sqrt{2},0$]D.[-$\sqrt{3},0$]

查看答案和解析>>

同步練習(xí)冊答案