11.設(shè)函數(shù)$f(x)=3sin(2x-\frac{π}{3})$的圖象為C,則如下結(jié)論中正確的是①②(寫出所有正確結(jié)論的編號(hào)).
①圖象C關(guān)于直線$x=\frac{11π}{12}$對(duì)稱;
②圖象C關(guān)于點(diǎn)$(\frac{2π}{3},0)$對(duì)稱;
③函數(shù)f(x)在區(qū)間$(-\frac{π}{12},\frac{5π}{12})$內(nèi)是減函數(shù);
④把函數(shù)$y=3sin(x-\frac{π}{6})$的圖象上點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的一半(縱坐標(biāo)不變)可以得到圖象C.

分析 對(duì)于①把$x=\frac{11π}{12}$代入函數(shù)表達(dá)式,判斷函數(shù)是否取得最值即可判斷正誤;
對(duì)于②把x=$\frac{2π}{3}$代入函數(shù)表達(dá)式,判斷函數(shù)是否取得0,即可判斷正誤;
對(duì)于③求出函數(shù)的單調(diào)減區(qū)間,判斷正誤;
對(duì)于④通過(guò)函數(shù)圖象的周期變換,即可判斷正誤.

解答 解:①因?yàn)?x=\frac{11π}{12}$時(shí),函數(shù)f(x)=3sin(2×$\frac{11π}{12}$-$\frac{π}{3}$)=3sin$\frac{3π}{2}$=-3,所以①正確;
②因?yàn)閤=$\frac{2π}{3}$時(shí),函數(shù)f(x)=3sin(2×$\frac{2π}{3}$-$\frac{π}{3}$)=3sinπ=0,所以②正確;
③因?yàn)?\frac{π}{2}$+2kπ$≤2x-\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,即x∈[$\frac{5π}{12}$+kπ,$\frac{11π}{12}$+kπ],k∈Z,
函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)在區(qū)間$(-\frac{π}{12},\frac{5π}{12})$內(nèi)不是減函數(shù),故不正確;
④把函數(shù)$y=3sin(x-\frac{π}{6})$的圖象上點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的一半(縱坐標(biāo)不變)可以得到圖象對(duì)應(yīng)的函數(shù)解析式為y=3sin(2x-$\frac{π}{6}$),故不正確.
故答案為:①②.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查三角函數(shù)的對(duì)稱軸,對(duì)稱中心,函數(shù)的單調(diào)性,圖象的周期變換,考查學(xué)生對(duì)基本知識(shí)的掌握熟練程度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某工廠要安排生產(chǎn)Ⅰ、Ⅱ兩種產(chǎn)品,這些產(chǎn)品要在A、B、C、D四種不同的設(shè)備上加工,按工藝規(guī)定,在一天內(nèi),產(chǎn)品Ⅰ每件在A、B、C、D設(shè)備上需要加工時(shí)間分別是2、2、3、0小時(shí),產(chǎn)品Ⅱ每件在A、B、C、D設(shè)備上需要加工時(shí)間分別是4、1、0、3小時(shí),A、B、C、D設(shè)備最長(zhǎng)使用時(shí)間分別是16、8、9、9小時(shí).設(shè)計(jì)劃每天生產(chǎn)產(chǎn)品Ⅰ的數(shù)量為x(件),產(chǎn)品Ⅱ的數(shù)量為y(件).(x,y∈N)
(1)用x,y列出滿足設(shè)備限制使用要求的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)已知產(chǎn)品Ⅰ每件利潤(rùn)2(萬(wàn)元),產(chǎn)品Ⅱ每件利潤(rùn)3(萬(wàn)元),在滿足設(shè)備限制使用要求的情況下,問(wèn)該工廠在每天內(nèi)產(chǎn)品Ⅰ,產(chǎn)品Ⅱ各生產(chǎn)多少件會(huì)使利潤(rùn)最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直線y=-$\frac{1}{2}$是函數(shù)f(x)的一條切線.
(Ⅰ)求a的值;
(Ⅱ)對(duì)任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.底面半徑為3的圓柱的側(cè)面積是圓柱表面積的$\frac{1}{2}$,則該圓柱的高為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若平面向量$\overrightarrow a$與$\overrightarrow$的夾角60°,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,|則$|{\overrightarrow a-2\overrightarrow b}|$=( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)集合A={x|-1<x<2},B={x|2a-1<x<2a+3}.
(1)若A⊆B,求a的取值范圍;
(2)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.4人站成一排,其中甲乙相鄰則共有12種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$x2+ax-2lnx(a∈R).
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若函數(shù)f(x)在區(qū)間(0,2]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=x0與g(x)=1B.f(x)=x與g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=x2-1與g(x)=x2+1D.f(x)=|x|與g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案