三棱錐P-ABC中△PAC是邊長為4的等邊三角形,△ABC為等腰直角三角形,∠ABC=90°,平面PAC⊥面ABC,D、E別為AB、PB的中點.
(1)求證AC⊥PD;
(2)求三棱錐P-CDE與三棱錐P-ABC的體積之比.
考點:棱柱、棱錐、棱臺的體積,直線與平面垂直的性質
專題:空間位置關系與距離
分析:(1)根據(jù)線面垂直關系判斷,(2)根據(jù)體積公式求解的出比值.
解答: 解:(1)取AC中點O,PO⊥AC,又面PAC⊥面ABC
∴PO⊥面ABC,連OD,則OD⊥面PAC,則DO⊥AC
AC⊥面POD,AC⊥PD                  
(2)VP-CDE=VD-PCE E為PB中點
∴S△PCE=
1
2
S△PBC

VD-PCE=
1
2
VD-PBC=
1
4
VP-ABC
VP-CDE
VP-ABC
=
1
4
點評:本題考查了空間幾何題的性質,計算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=
1
2
AA1
,D,M分別是AA1,BC的中點,則DM與側面B1BCC1所成的角正弦值為( 。
A、
2
2
B、
6
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,比較a2-3與4a-15的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|k•360°+60°<x<k•360°+300°,k∈Z},B={x|k•360°-210°<x<k•360°,k∈Z},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=1+
a
2x+1
(a≠0)
(1)若f(0)=0,求a的值,并證明:f(x)為奇函數(shù);
(2)用單調性的定義判斷f(x)的單調性;
(3)在(1)的條件下,若f(x)<m恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線M上動點N滿足到點F(0,
5
4
)的距離等于到定直線y=
3
4
的距離,又過點P(1,3)的直線交此曲線于A,B兩點,過A,B分別做曲線M的兩切線l1,l2
(1)求此曲線M的方程;
(2)當過點P(1,3)的直線變化時,證明l1,l2的交點過定直線;
(3)設l1,l2的交點為C,求三角形ABC面積的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四面體A-BCD中,O,E分別是BD,BC的中點,AC=BC=CD=BD=2,AB=AD=
2

(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的余弦值;
(3)求點C到平面AED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,且該幾何體的體積是
3
2
,則正視圖中的x的值是(  )
A、
3
2
B、
9
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設y=f(x)是定義在R上的函數(shù),如果存在點A,對函數(shù)y=f(x)的圖象上的任意P點,P關于A的對稱點Q也在函數(shù)y=f(x)的圖象上,那么稱函數(shù)y=f(x)的圖象關于點A對稱,A稱為函數(shù)y=f(x)的圖象的一個對稱中心.
(1)求證:點A(2,0)是函數(shù)y=(x-2)3的對稱中心;
(2)設y=f(x)是定義在R上的函數(shù),求證:A(a,b)是函數(shù)y=f(x)圖象的一個對稱中心的充要條件是函數(shù)y=f(x+a)-b是奇函數(shù);
(3)試問函數(shù)f(x)=x3-2x2+3的圖象是否關于某點對稱?為什么?

查看答案和解析>>

同步練習冊答案