分析 (Ⅰ)方法一:由已知及射影定理可求cosB=$\frac{1}{2}$,結合范圍0<B<π,可求B的值;方法二:將邊化角,由正弦定理,三角函數恒等變換的應用化簡可得cosB=$\frac{1}{2}$,結合范圍0<B<π,可求B的值.
(Ⅱ)由(Ⅰ)及三角函數恒等變換的應用化簡函數解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),(i)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得單調遞減區(qū)間.(ii)由x∈[-$\frac{π}{4}$,$\frac{π}{4}$],可求2x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],利用正弦函數的性質可求函數f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值,最小值.
解答 (本題滿分為12分)
解:(Ⅰ)方法一:bcosC+ccosB=2acosB,由射影定理,得a=2acosB,….(1分)
∴cosB=$\frac{1}{2}$,…(2分)
又∵0<B<π,…..(3分)
∴B=$\frac{π}{3}$.…(4分)
方法二:或邊化角,由bcosC+ccosB=2acosB,變?yōu)閟inBcosC+sinCcosB=2sinAcosB,
即sin(B+C)=sinA=2sinAcosB,….(1分)
∴cosB=$\frac{1}{2}$….(2分)
又0<B<π,…(3分)
∴B=$\frac{π}{3}$.….(4分)
(Ⅱ)由(Ⅰ)知B=$\frac{π}{3}$,
所以f(x)=2cos2x+sin(2x+B)+sin(2x-B)-1
=(2cos2x-1)+sin2xcos$\frac{π}{3}$+cos2xsin$\frac{π}{3}$+sin2xcos$\frac{π}{3}$-cos2xsin$\frac{π}{3}$+cos2x
=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)..…(6分)
(i)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得:kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z,
可得:f(x)的單調遞減區(qū)間是:[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.…(8分)
(ii)∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],
∴2x∈[-$\frac{π}{2}$,$\frac{π}{2}$],可得:2x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],…(9分)
∴sin(2x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],…(10分)
所以,f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)∈[-1,$\sqrt{2}$],…(11分)
故函數f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值為$\sqrt{2}$,最小值為-1.…(12分)
點評 本題主要考查了射影定理,正弦定理,三角函數恒等變換的應用,正弦函數的圖象和性質的應用,考查了轉化思想和數形結合思想的應用,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲 | 80 | 110 | 135 | 135 | 140 |
乙 | 100 | x | y | 125 | 155 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com