【題目】如圖,三棱臺(tái)的底面是正三角形,平面平面,.
(1)求證:;
(2)若,求直線與平面所成角的正弦值.
【答案】(Ⅰ)見證明;(Ⅱ)
【解析】
(Ⅰ)取的中點(diǎn)為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點(diǎn),可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量為,設(shè)與平面所成角為,則,即可得到答案。
解:(Ⅰ)取的中點(diǎn)為,連結(jié).
由是三棱臺(tái)得,平面平面,從而.
∵,∴,
∴四邊形為平行四邊形,∴.
∵,為的中點(diǎn),
∴,∴.
∵平面平面,且交線為,平面,
∴平面,而平面,
∴.
(Ⅱ)連結(jié).
由是正三角形,且為中點(diǎn),則.
由(Ⅰ)知,平面,,
∴,,
∴,,兩兩垂直.
以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,
∴,,.
設(shè)平面的一個(gè)法向量為.
由可得,.
令,則,,∴.
設(shè)與平面所成角為,則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴橢圓”,若橢圓右焦點(diǎn)坐標(biāo)為,且過點(diǎn).
(1)求橢圓的“伴橢圓”方程;
(2)在橢圓的“伴橢圓”上取一點(diǎn),過該點(diǎn)作橢圓的兩條切線、,證明:兩線垂直;
(3)在雙曲線上找一點(diǎn)作橢圓的兩條切線,分別交于切點(diǎn)、使得,求滿足條件的所有點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為(),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合是實(shí)數(shù)集的子集,如果正實(shí)數(shù)滿足:對任意都存在使得則稱為集合的一個(gè)“跨度”,已知三個(gè)命題:
(1)若為集合的“跨度”,則也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
這三個(gè)命題中正確的個(gè)數(shù)是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120元/千克、80元/千克、70元/千克、40元千克,為增加銷量,張軍對這四種干果進(jìn)行促銷:一次購買干果的總價(jià)達(dá)到150元,顧客就少付x(2x∈Z)元.每筆訂單顧客網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.
①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;
②在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。
(1)求直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,底面是直角三角形,,為側(cè)棱的中點(diǎn).
(1)求異面直線、所成角的余弦值;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)無窮數(shù)列分別滿足,,
其中,設(shè)數(shù)列的前項(xiàng)和分別為,
(1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:存在唯一的正整數(shù)(),使得,稱數(shù)列為“墜點(diǎn)數(shù)列”
①若數(shù)列為“5墜點(diǎn)數(shù)列”,求;
②若數(shù)列為“墜點(diǎn)數(shù)列”,數(shù)列為“墜點(diǎn)數(shù)列”,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com