【題目】張軍自主創(chuàng)業(yè),在網上經營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2xZ).每筆訂單顧客網上支付成功后,張軍會得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;

②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.

【答案】

【解析】

①結合題意即可得出;②分段列出式子,求解即可。

解: ①顧客一次購買松子和腰果各1千克,需要支付元,則.

②設顧客一次購買干果的總價為元,當時,張軍每筆訂單得到的金額顯然不低于促銷前總價的七折.當時,.即恒成立,則,,又,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,、是以為直徑的圓上兩點,,上一點,且,將圓沿直徑折起,使點在平面的射影上,已知.

1)求證:平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,且.

(Ⅰ)求證:;

(Ⅱ)求直線AB與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的直角坐標方程和直線的普通方程;

2)若直線與曲線交于、兩點,設,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是圓錐的高,是圓錐底面的直徑,是底面圓周上一點,的中點,平面和平面將圓錐截去部分后的幾何體如圖所示.

1)求證:平面平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的左、右焦點分別是,,點的上頂點,點上,,且.

1)求的方程;

2)已知過原點的直線與橢圓交于兩點,垂直于的直線且與橢圓交于,兩點,若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據:

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據求違章人數(shù)與月份之間的回歸直線方程

(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式: , .

參考數(shù)據: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列滿足,其中,且, 為常數(shù).

(1)若是等差數(shù)列,且公差,求的值;

(2)若,且存在,使得對任意的都成立,求的最小值;

(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對任意的均成立. 求所有滿足條件的數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平頂山市公安局交警支隊依據《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機動車途經十字口或斑馬線,無論轉彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設備所抓拍的個月內,機動車駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據:

月份

違章駕駛員人數(shù)

(Ⅰ)請利用所給數(shù)據求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預測該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式:,

查看答案和解析>>

同步練習冊答案