分析 $\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$=n2+n,n=1時,a1=4.n≥2時,$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n-1}}$=(n-1)2+(n-1),相減可得:$\sqrt{{a}_{n}}$=2n,即an=4n2.$\frac{1}{{a}_{n}-1}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.即可得出.
解答 解:∵$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$=n2+n,
∴n≥2時,$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n-1}}$=(n-1)2+(n-1),
∴$\sqrt{{a}_{n}}$=n2+n-[(n-1)2+(n-1)]=2n,
∴an=4n2.
n=1時,$\sqrt{{a}_{1}}$=2,可得a1=4,對于上式也成立.
∴$\frac{1}{{a}_{n}-1}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
則$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
故答案為:$\frac{n}{2n+1}$.
點評 本題考查了數(shù)列遞推關(guān)系、數(shù)列通項公式、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若|$\vec a|>|\vec b|$,$\vec a>\vec b$ | B. | 若$|\vec a|=|\vec b|$,$\vec a=\vec b$ | ||
C. | 若$\vec a=\vec b$,則$\vec a∥\vec b$ | D. | 若$\vec a≠\vec b$,則$\vec a$與$\vec b$不是共線向量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,2+\frac{2}{e})$ | B. | $(2,2+\frac{2}{e})$ | C. | $(1,1+\frac{1}{e})$ | D. | $(2,2+\frac{1}{e})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$ | B. | $({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$ | C. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com