12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$目標(biāo)函數(shù)z=6x+2y的最小值是10,則z的最大值是( 。
A.20B.22C.24D.26

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到使目標(biāo)函數(shù)取得最小值的最優(yōu)解,代入目標(biāo)函數(shù)求得z,進(jìn)一步求出使目標(biāo)函數(shù)取得最大值的最優(yōu)解,代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=2}\\{-2x+y+c=0}\end{array}\right.$,解得A(2,4-c),
由圖可知,當(dāng)直線z=6x+2y過A時(shí),直線在y軸上的截距最小,
此時(shí)zmin=6×2+2×(4-c)=10,得c=5.
∴直線-2x+y+c=0化為-2x+y+5=0.
聯(lián)立$\left\{\begin{array}{l}{-2x+y+5=0}\\{x+y=4}\end{array}\right.$,解得B(3,1).
由圖可知,當(dāng)直線z=6x+2y過B時(shí),直線在y軸上的截距最大,
此時(shí)zmax=6×3+2×1=20.
故選:A.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示,側(cè)棱與底面垂直,且底面為正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分別在AD1、BC上移動(dòng),始終保持MN∥平面DCC1D1,設(shè)BN=y,MN=x,則函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程$\left\{\begin{array}{l}x=3cosφ\(chéng)\ y=2sinφ\(chéng)end{array}$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線θ=$\frac{π}{3}$與曲線C2交于點(diǎn)D(4,$\frac{π}{3}}$).
(1)求曲線C1的普通方程及C2的直角坐標(biāo)方程;
(2)在極坐標(biāo)系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}}$)是曲線C1上的兩點(diǎn),求$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,且與橢圓x2+$\frac{y^2}{2}$=1有相同離心率. 
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn),且橢圓C上存在點(diǎn)Q,滿足$\overrightarrow{OA}+\overrightarrow{OB}=λ\overrightarrow{OQ}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知命題p:|x-1|<c(c>0);命題q:|x-5|>2,且p是q的既不充分也不必要條件,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知|x|≤$\frac{π}{4}$,求函數(shù)y=2-4cosx-3sin2x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=1-2sin2(x+$\frac{π}{4}$)是(  )
A.最小正周期為π的偶函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為2π的偶函數(shù)D.最小正周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線x=m(m>1)與函數(shù)f(x)=logax,g(x)=logbx的圖象及x軸分別交于A,B,C三點(diǎn).若|AB|=2|BC,則|( 。
A.b=a2或a=b2B.a=b-1或a=b3C.a=b-1或b=a3D.a=b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,將曲線C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))上所有點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼?倍得到曲線C2,將曲線C1向上平移一個(gè)單位得到曲線C3,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C2的普通方程及曲線C3的極坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是曲線C2上任意一點(diǎn),點(diǎn)Q是曲線C3上任意一點(diǎn),求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案