已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).

(1)若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式;

(2)若f(x)的最大值為正數(shù),求a的取值范圍.

解析:因為本題給出解析式特征,可采取待定系數(shù)法求解.

解:(1)∵f(x)+2x>0的解集為(1,3),f(x)+2x=a(x-1)(x-3),且a<0,?

因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.①?

由方程f(x)+6a=0,得ax2-(2+4a)x+9a=0.     ②?

因為方程②有兩個相等的根,所以Δ=[-(2+4a)]2-4aEquation.39a=0,即5a2-4a-1=0.

解得a=1或a=-.

由于a<0,舍去a=1.?

將a=-代入①得f(x)的解析式為f(x)=-x2-x-.

(2)由f(x)=ax2-2(1+2a)x+3a=a(x-)2-及a<0,可得f(x)的最大值為-.

,解得a<-2-或-2+<a<0.

?故當(dāng)f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是(-∞,-2-)∪(-2+,0).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+
1
2
滿足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表達式;
(2)若f(x)在定義域(-1,t]上的值域為(-1,1],求t的取值范圍;
(3)是否存在實數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)y=f(x)+
2
3
x-1
的圖象過原點且關(guān)于y軸對稱,記函數(shù) h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)當(dāng)a=
1
10
時,求函數(shù)y=h(x)
的單調(diào)遞減區(qū)間;
(Ⅲ)試討論函數(shù) y=h(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當(dāng)a>0時判斷f(x)在(-1,1)上的單調(diào)性;
(3)若方程g(x)=x的兩實根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=
-x2-x+2
的定義域為A,若對任意的x∈A,不等式x2-4x+k≥0成立,則實數(shù)k的最小值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當(dāng)a>0時判斷f(x)在(-1,1)上的單調(diào)性;
(3)當(dāng)b=2a時,問是否存在x的值,使?jié)M足-1≤a≤1且a≠0的任意實數(shù)a,不等式f(x)<4恒成立?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案