【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得的最大利潤為( )
甲 | 乙 | 原料限額 | |
A/噸 | 3 | 2 | 12 |
B/噸 | 1 | 2 | 8 |
A.15萬元B.16萬元C.17萬元D.18萬元
【答案】D
【解析】
設(shè)該企業(yè)每天生產(chǎn)x噸甲產(chǎn)品,y噸乙產(chǎn)品,可獲得利潤為z萬元,根據(jù)題意列出x,y滿足不等式組和的表達式,畫出可行解域,通過平移直線找到使得目標函數(shù)有最大值時所經(jīng)過的點的坐標,最后代入求值即可.
設(shè)該企業(yè)每天生產(chǎn)x噸甲產(chǎn)品,y噸乙產(chǎn)品,可獲得利潤為z萬元,則z=3x+4y,且x,y滿足不等式組
畫出可行域如圖中陰影部分(含邊界)所示,
直線z=3x+4y過點M時,z=3x+4y取得最大值,
由得∴M(2,3),
故z=3x+4y的最大值為18,所以該企業(yè)每天可獲得的最大利潤為18萬元.
故選:D
科目:高中數(shù)學 來源: 題型:
【題目】2021年某省將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校近幾年來通過“書香校園”主題系列活動,倡導(dǎo)學生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線過點且漸近線為,則下列結(jié)論錯誤的是( )
A.曲線的方程為;
B.左焦點到一條漸近線距離為;
C.直線與曲線有兩個公共點;
D.過右焦點截雙曲線所得弦長為的直線只有三條;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+1的圖象與函數(shù)g(x)=3cosπx的圖象所有交點的橫坐標之和等于( )
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構(gòu)造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉(zhuǎn)動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導(dǎo)槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點M的坐標,并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當,|GH|,依次成等差數(shù)列時,求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在①,且,②,且,③,且這三個條件中任選一個,補充在下面問題中,若問題中的存在,求出和數(shù)列的通項公式與前項和;若不存在,請說明理由.
設(shè)為各項均為正數(shù)的數(shù)列的前項和,滿足________,是否存在,使得數(shù)列成為等差數(shù)列?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了對某種商品進行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關(guān)系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進行了統(tǒng)計分析,得到一組檢測數(shù)據(jù)如表所示:
月銷售單價(元/件) | ||||||
月銷售量(萬件) |
(1)若用線性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實習員工求得回歸直線方程分別為:,和,其中有且僅有一位實習員工的計算結(jié)果是正確的.請結(jié)合統(tǒng)計學的相關(guān)知識,判斷哪位實習員工的計算結(jié)果是正確的,并說明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為和,請用說明哪個回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當月銷售單價為何值時,商品的月銷售額預(yù)報值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com