10、如圖,已知△ABC為直角三角形,其中∠ACB=90°,M為AB中點(diǎn),PM垂直于△ABC所在平面,那么( 。
分析:在下底面內(nèi)找出MA=MB=MC,再利用射影長相等斜線段相等就可選答案.
解答:解:∵M(jìn)是Rt△ABC斜邊AB的中點(diǎn),
∴MA=MB=MC.
又∵PM⊥平面ABC,
∴MA、MB、MC分別是PA、PB、PC在平面ABC上的射影,
∴PA=PB=PC.
應(yīng)選C.
點(diǎn)評:本題考查從同一點(diǎn)出發(fā)的斜線段與對應(yīng)射影長之間的關(guān)系,是對線面垂直性質(zhì)的應(yīng)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同側(cè),M為EA的中點(diǎn),CE=CA=2BD,求證:
(1)DE=DA;
(2)平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知△ABC為直角三角形,分別以直角邊AC、BC為直徑作半圓AmC和BnC,以AB為直徑作半圓ACB,記兩個月牙形陰影部分的面積之和為S1,△ABC的面積為S2,則S1與S2的大小關(guān)系為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC為正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同側(cè),M為EA的中點(diǎn),CE=CA=2BD,
求證:(1)DE=DA;
(2)平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):7 立體幾何 質(zhì)量檢測(1)(解析版) 題型:選擇題

如圖,已知△ABC為直角三角形,其中∠ACB=90°,M為AB中點(diǎn),PM垂直于△ABC所在平面,那么( )

A.PA=PB>PC
B.PA=PB<PC
C.PA=PB=PC
D.PA≠PB≠PC

查看答案和解析>>

同步練習(xí)冊答案