【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知向量m = (cosA,cosB),n = (b + 2c,a),且m⊥n.

(1)求角A的大;

(2)若a = 4,b + c = 8,求AC邊上的高h(yuǎn)的大。

【答案】(1);(2).

【解析】試題分析:

(1)由向量垂直可得數(shù)量積為0,據(jù)此可得 .

(2)利用題中所給的條件列出方程組,求解方程組可得AC邊上的高h(yuǎn)的大小為.

試題解析:

(1)因?yàn)閙⊥n,所以m·n = 0,所以(b + 2c)cosA + a cosB = 0,

由正弦定理得cosAsinB + 2cosAsinC + cosBsinA = 0,即sin(A + B) + 2cosAsinC = 0,

因?yàn)锳 + B = – C,所以sin(A+B)=sinC,即sinC + 2cosAsinC = 0.

又因?yàn)镃(0,),所以sinC > 0,所以cosA = -

因?yàn)锳(0,),所以

(2)由…………9分,解得

所以S = bcsinA = hAC,所以h =

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】深圳市某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒(méi)有用過(guò)的球),3個(gè)是舊球(即至少用過(guò)一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.
(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (常數(shù)a∈R).
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=lnx﹣ 的零點(diǎn)所在的大致區(qū)間是(
A.(1,2)
B.(2,3)
C.(e,3)
D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的體積為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)C1
(1)求與雙曲線(xiàn)C1有相同焦點(diǎn),且過(guò)點(diǎn)P(4, )的雙曲線(xiàn)C2的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)l:y=x+m分別交雙曲線(xiàn)C1的兩條漸近線(xiàn)于A、B兩點(diǎn).當(dāng) =3時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在斜三棱柱中,,平面底面,點(diǎn)、D分別是線(xiàn)段、BC的中點(diǎn).

(1)求證:

(2)求證:AD//平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集為實(shí)數(shù)集R,集合A={x|y= + },B={x|2x>4}
( I)分別求A∪B,A∩B,(UB)∪A
( II)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=2x2+bx+c在 上是減函數(shù),在 上是增函數(shù),且兩個(gè)零點(diǎn)x1 , x2滿(mǎn)足|x1﹣x2|=2,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案