已知函數(shù)f(x)的定義域(-1,0),則函f(2x-1)的定義域?yàn)椋ā 。?/div>
A、(-1,1) |
B、(,1) |
C、(-1,0) |
D、(0,) |
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系即可得到結(jié)論.
解答:
解:∵函數(shù)f(x)的定義域(-1,0),
∴由-1<2x-1<0,
即0<x<
,
故函數(shù)的定義域?yàn)椋?,
),
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)是定義在(-4,4)上的奇函數(shù),且它在定義域內(nèi)單調(diào)遞減,若a滿足:f(1-a)+f(2a-3)<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)p:實(shí)數(shù)x滿足x
2-4ax+3a
2<0,其中a>0,q:實(shí)數(shù)x滿足
.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
過雙曲線的左焦點(diǎn)F
1且與雙曲線的實(shí)軸垂直的直線交雙曲線于A、B兩點(diǎn),若在雙曲線的虛軸所在直線上存在一點(diǎn)C,使
•0,求雙曲線離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知點(diǎn)P(1,3)是角α終邊上一點(diǎn),且cosα=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)集合A是函數(shù)f(x)=
+lg(3-x)的定義域,集合B是函g(x)=2
x+1的值域.
(Ⅰ)求集A∩B;
(Ⅱ)設(shè)集合C={x|x<a},若集合A∩C=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知圓C:(x-3)
2+(y-3)
2=9,直線l
1:y=kx與圓C交于P、Q兩個(gè)不同的點(diǎn),M為P、Q的中點(diǎn).
(Ⅰ)已知A(3,0),若
•=0,求實(shí)數(shù)k的值;
(Ⅱ)求點(diǎn)M的軌跡方程;
(Ⅲ)若直線l
1與l
2:x+y+1=0的交點(diǎn)為N,求證:|OM|•|ON|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)y=a•4x+2x+2+1有零點(diǎn),求a取值范圍并求零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=log
2(x+1)+log
2.
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)若關(guān)于x的方程f(x)-m=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的最小值.
查看答案和解析>>