有一個(gè)小自來(lái)水廠,蓄水池中有水450噸,水廠每小時(shí)可向蓄水池中注水80噸,同時(shí)蓄水池又向居民小區(qū)供水,t小時(shí)內(nèi)供水總量為80
2t
噸,現(xiàn)在開(kāi)始向池中注水并同時(shí)向居民小區(qū)供水.若蓄水池中存水量少于150噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,問(wèn)24小時(shí)內(nèi)有幾個(gè)小時(shí)供水緊張?
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)x小時(shí)后蓄水池中的水量為y,可得y=450+80x-80
2x
,當(dāng)y≤150噸時(shí)就會(huì)出現(xiàn)供水緊張現(xiàn)象,即可得出結(jié)論.
解答: 解:設(shè)x小時(shí)后蓄水池中的水量為y,
由題意得,y=450+80x-80
2x

令t=
2x
(t≥0),則x=
t2
2
,
∴y=40t2-80t+450
∵當(dāng)y≤150噸時(shí)就會(huì)出現(xiàn)供水緊張現(xiàn)象,
∴40t2-80t+450≤150,
∴2t2-4t+15≤0,無(wú)解
故24小時(shí)內(nèi)不會(huì)供水緊張.
點(diǎn)評(píng):本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,正確理解題意并得出關(guān)系式、換元法、一元二次不等式的解法等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|cosx|•sinx給出下列五個(gè)說(shuō)法:
①f(
2014π
3
)=-
3
4

②若|f(x1)=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[-
π
4
,
π
4
]上單調(diào)遞增;
④函數(shù)f(x)的周期為π;
⑤f(x)的圖象關(guān)于點(diǎn)(-
π
2
,0)成中心對(duì)稱.
其中正確說(shuō)法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin2x-cos2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}有a2=P(常數(shù)P>0),其前N項(xiàng)和為Sn,滿足Sn=
n(an-a1)
2
(n∈N*
(1)求數(shù)列{an}的首項(xiàng)a1,并判斷{an}是否為等差數(shù)列,若是求其通項(xiàng)公式,不是,說(shuō)明理由;
( 2)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,Tn是數(shù)列{Pn}的前n項(xiàng)和,求證:Tn-2n<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(1,sinx-1),
OB
=(sinx+sinxcosx,sinx),f(x)=
OA
OB
(x∈R),若
OA
OB
>1,試求|
OA
|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)f(x)=
x3-3x2+1,x>0
x3+3x2-1,x<0
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax+2在區(qū)間[-1,1]的最小值是-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式0≤x+1≤2成立時(shí),關(guān)于x的不等式x-a-1>0也成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足x2+y2=2x,則x2y2的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案