【題目】設(shè),若,求證:
(1)方程有實(shí)根.
(2)若﹣2<<﹣1且設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)根,則≤|x1﹣x2|<
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(Ⅰ)針對(duì)a進(jìn)行分類討論,當(dāng)a=0時(shí),f(0)f(1)≤0顯然與條件矛盾,當(dāng)a≠0時(shí),f(x)=3ax2+2bx+c為二次函數(shù),只需考慮判別式大于等于零即可;
(Ⅱ)利用根與系數(shù)的關(guān)系將(x1﹣x2)2轉(zhuǎn)化成關(guān)于的二次函數(shù),根據(jù)的范圍求出值域即可.
試題解析:
證明:(1)若a=0,則b=﹣c,
f(0)f(1)=c(3a+2b+c)=﹣c2≤0,
與已知矛盾,所以a≠0.
方程3ax2+2bx+c=0的判別式△=4(b2﹣3ac),
由條件a+b+c=0,消去b,得△=4(a2+c2﹣ac)=
故方程f(x)=0有實(shí)根.
(2)由條件,知,,
所以(x1﹣x2)2=(x1+x2)2﹣4x1x2=.
因?yàn)椹?<<﹣1所以
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中, 平面, 平面, ,且, 是的中點(diǎn).
(Ⅰ)求證: .
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
(Ⅲ)在棱上是否存在一點(diǎn),使得直線與平面所成的角是.若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為: ,直線的參數(shù)方程是(為參數(shù), ).
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),且線段的中點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),證明: ;
(Ⅱ)當(dāng),且時(shí),不等式成立,求實(shí)數(shù)的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對(duì)2015年中國(guó)好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下
觀眾年齡 | 支持A | 支持B | 支持C |
20歲以下 | 100 | 200 | 600 |
20歲以上(含20歲) | 100 | 100 | 400 |
(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取5人作為一個(gè)總體,從這5人中任意選取2人,求恰有1人在20歲以下的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了了解今年高中畢業(yè)生的體能狀況,從某校高中畢業(yè)班中抽取一個(gè)班進(jìn)行鉛球測(cè)試,成績(jī)?cè)?/span>8.0米(精確到0.1米)以上的為合格.?dāng)?shù)據(jù)分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30 .第6小組的頻數(shù)是7.
(I)求這次鉛球測(cè)試成績(jī)合格的人數(shù);
(II)若參加測(cè)試的學(xué)生中9人成績(jī)優(yōu)秀,現(xiàn)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人參加“畢業(yè)運(yùn)動(dòng)會(huì)”,已知學(xué)生、的成績(jī)均為優(yōu)秀,求兩人、至少有1人入選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中是自然對(duì)數(shù)的底數(shù)).
(1), 使得不等式成立,試求實(shí)數(shù)的取值范圍.
(2)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某正三棱柱的三視圖如圖所示,其中正(主)視圖是邊長(zhǎng)為的正方形,該正三棱柱的表面積是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com