6.某沿海四個(gè)城市A,B,C,D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,AD=70$\sqrt{6}$nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)向直線航行,一段時(shí)間到達(dá)D后,輪船收到指令改向城市C直線航行,收到指令時(shí)城市C對(duì)于輪船的方位角是南偏西θ度,則sinθ=$\frac{\sqrt{2}}{2}$.

分析 求出AC,計(jì)算∠ACD,利用正弦定理再計(jì)算∠ADC,故而θ=75°-∠ADC.

解答 解:連結(jié)AC,
在△ABC中,由余弦定理得:AC2=6400+(40+30$\sqrt{3}$)2-2×$80×(40+30\sqrt{3})×\frac{1}{2}$=7500,
∴AC=50$\sqrt{3}$,
由正弦定理得$\frac{AB}{sin∠ACB}=\frac{AC}{sin∠ABC}$,即$\frac{80}{sin∠ACB}=\frac{50\sqrt{3}}{\frac{\sqrt{3}}{2}}$,
解得sin∠ACB=$\frac{4}{5}$,∴cos∠ACB=$\frac{3}{5}$,
∴sin∠ACD=sin(135°-∠ACB)=$\frac{\sqrt{2}}{2}$×$\frac{3}{5}$+$\frac{\sqrt{2}}{2}$×$\frac{4}{5}$=$\frac{7\sqrt{2}}{10}$,
在△ACD中,由正弦定理得$\frac{AC}{sin∠ADC}=\frac{AD}{sin∠ACD}$,即$\frac{50\sqrt{3}}{sin∠ADC}$=$\frac{70\sqrt{6}}{\frac{7\sqrt{2}}{10}}$,
解得sin∠ADC=$\frac{1}{2}$,∴∠ADC=30°,
∴sinθ=sin(75°-30°)=sin45°=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查了正弦定理,解三角形的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l1:x+2y-4=0,l2:2x+my-m=0(m∈R),且l1與l2平行,則m=4,l1與l2之間的距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=a(x-1),g(x)=(ax-1)ex,a∈R.
(Ⅰ)判斷直線y=f(x)能否與曲線y=g(x)相切,并說明理由;
(Ⅱ)若不等式f(x)>g(x)有且僅有兩個(gè)整數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={1,2,3,4,5},B={3,4,5,6,7},則圖中陰影部分表示的集合為( 。
A.{1,2,3,4,5}B.{3,4,5,6,7}C.{1,2,3,4,5,6,7}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn),任何一個(gè)三次函數(shù)都有“拐點(diǎn)”和對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.
(Ⅰ)求函數(shù)f(x)=x3-3x2+3x的對(duì)稱中心.
(Ⅱ)對(duì)于(Ⅰ)中的函數(shù)f(x),計(jì)算f(-98)+f(-97)+…+f(-1)+f(0)+f(1)+…+f(99)+f(100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l1:(m-4)x-(2m+4)y+2m-4=0與l2:(m-1)x+(m+2)y+1=0,則“m=-2”是“l(fā)1∥l2”的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)為F1、F2,在雙曲線上存在點(diǎn)P滿足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,則雙曲線的漸近線的斜率$\frac{a}$的取值范圍是( 。
A.$0<\frac{a}≤\frac{3}{2}$B.$\frac{a}≥\frac{3}{2}$C.$0<\frac{a}≤\frac{{\sqrt{5}}}{2}$D.$\frac{a}≥\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,雙曲線的離心率為$\sqrt{2}$,則λ=( 。
A.$\sqrt{2}$B.$2+\sqrt{3}$C.$2+\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S8-S5=6,則S13的值為26.

查看答案和解析>>

同步練習(xí)冊(cè)答案