【題目】在平面直角坐標系xOy中,過點的直線l與拋物線交于AB兩點,以AB為直徑作圓,記為,與拋物線C的準線始終相切.

1)求拋物線C的方程;

2)過圓心Mx軸垂線與拋物線相交于點N,求的取值范圍.

【答案】1.(2

【解析】

1)過AB,M分別作拋物線的準線的垂線,垂足分別為DE,P,由題意轉化條件得,即可得AB,F三點共線,即可得解;

2)設直線,聯(lián)立方程可得、、,利用弦長公式可得,利用點到直線的距離求得高,表示出三角形面積后即可得解.

1)證明:過A,B,M分別作拋物線的準線的垂線,垂足分別為D,E,P,

設拋物線焦點為F,

由題意知圓M的半徑,

,

即可得,所以AB,F三點共線,即,所以,

所以拋物線C的方程為;

2)由(1)知拋物線,設直線,點,,

聯(lián)立可得:,

所以,

所以,

,,

故點N到直線AB距離

,

所以,

時,取最小值為32.

故所求三角形面積的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個極值點.

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲,乙兩人進行拋硬幣游戲,規(guī)定:每次拋幣后,正面向上甲贏,否則乙贏.此時,兩人正在游戲,且知甲再贏(常數(shù))次就獲勝,而乙要再贏(常數(shù))次才獲勝,其中一人獲勝游戲就結束.設再進行次拋幣,游戲結束.

1)若,求概率

2)若,求概率的最大值(用表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.

1)求圓的極坐標方程;

2)若直線為參數(shù))被圓截得的弦長為2,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為,與坐標軸分別交于A,B兩點,且經過點Q,1).

)求橢圓C的標準方程;

)若Pm,n)為橢圓C外一動點,過點P作橢圓C的兩條互相垂直的切線l1、l2,求動點P的軌跡方程,并求ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,為矩形,為等腰梯形,分別為,中點,,

1)證明:平面;

2)求二面角的正弦值;

3)線段上是否存在點,使得平面,若存在求出的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,BC//A為正三角形,MPD中點.

1)證明:CM//平面PAB;

2)若二面角P-AB-C的余弦值為,求直線AD與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位科技活動紀念章的結構如圖所示,O是半徑分別為1cm,2cm的兩個同心圓的圓心,等腰△ABC的頂點A在外圓上,底邊BC的兩個端點都在內圓上,點OA在直線BC的同側.若線段BC與劣弧所圍成的弓形面積為S1,△OAB與△OAC的面積之和為S2, 設∠BOC2

1)當時,求S2S1的值;

2)經研究發(fā)現(xiàn)當S2S1的值最大時,紀念章最美觀,求當紀念章最美觀時,cos的值.(求導參考公式:(sin2x)'2cos2x,(cos2x)'=﹣2sin2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象如圖所示,先將函數(shù)圖象上所有點的橫坐標變?yōu)樵瓉淼?/span>6倍,縱坐標不變,再將所得函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,下列結論正確的是(

A.函數(shù)是奇函數(shù)B.函數(shù)在區(qū)間上是增函數(shù)

C.函數(shù)圖象關于對稱D.函數(shù)圖象關于直線對稱

查看答案和解析>>

同步練習冊答案