7.若三棱錐P-ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,則三棱錐P-ABC的外接球的體積為( 。
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

分析 利用AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,求出PA=$\sqrt{2}$,三棱錐P-ABC擴(kuò)充為長方體,則長方體的對角線長為$\sqrt{2+1+1}$=2,可得三棱錐P-ABC的外接球的半徑為1,即可得出結(jié)論.

解答 解:∵AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,
∴PA=$\sqrt{2}$,
三棱錐P-ABC擴(kuò)充為長方體,則長方體的對角線長為$\sqrt{2+1+1}$=2,
∴三棱錐P-ABC的外接球的半徑為1,
∴三棱錐P-ABC的外接球的體積為$\frac{4π}{3}$,
故選A.

點評 本題考查三棱錐P-ABC的外接球的體積,考查線面垂直,線面角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{5}}{3}$,橢圓上一點P到兩焦點距離之和為12,則橢圓短軸長為( 。
A.8B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,BC=7,AC=6,cosC=$\frac{{2\sqrt{6}}}{7}$.若動點P滿足$\overrightarrow{AP}$=(1-λ)$\overrightarrow{AB}$+$\frac{2λ}{3}$$\overrightarrow{AC}$,(λ∈R),則點P的軌跡與直線BC,AC所圍成的封閉區(qū)域的面積為( 。
A.5B.10C.2$\sqrt{6}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)+b($A>0,ω>0,|φ|<\frac{π}{2}$)的圖象上相鄰的一個最大值點與對稱中心分別為($\frac{π}{18}$,3)、$(\frac{2π}{9},0)$,則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.($\frac{2kπ}{3}-\frac{π}{9}$,$\frac{2kπ}{3}+\frac{2π}{9}$),k∈ZB.($\frac{2kπ}{3}$-$\frac{4π}{9}$,$\frac{2kπ}{3}$-$\frac{π}{9}$),k∈Z
C.($\frac{2kπ}{3}$+$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{7π}{18}$),k∈ZD.($\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}-\frac{π}{18}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=-\frac{1}{a}+\frac{2}{x}(x>0)$
(1)判斷f(x)在(0,+∞)上的增減性,并證明你的結(jié)論    
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.心理健康教育老師對某班50個學(xué)生進(jìn)行了心里健康測評,測評成績滿分為100分.成績出來后,老師對每個成績段的人數(shù)進(jìn)行了統(tǒng)計,并得到如圖4所示的頻率分布直方圖.
(1)求a,并從頻率分布直方圖中求出成績的眾數(shù)和中位數(shù);
(2)若老師從60分以下的人中選兩個出來與之聊天,則這兩人一個在(40,50]這一段,另一個在(50,60]這一段的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,如果a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),則△ABC最小角為( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某校趣味運(yùn)動會的頒獎儀式上,為了活躍氣氛,大會組委會決定在頒獎過程中進(jìn)行抽獎活動,用分層抽樣的方法從參加頒獎儀式的高一、高二、高三代表隊中抽取20人前排就座,其中高二代表隊有5人.
(1)把在前排就座的高二代表隊5人分別記為a,b,c,d,e,現(xiàn)從中隨機(jī)抽取3人上臺抽獎,求a和b至少有一人上臺抽獎的概率;
(2)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎.求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y∈R且2x+2y=1,則x+y的取值范圍為(-∞,-2].

查看答案和解析>>

同步練習(xí)冊答案