15.已知函數(shù)f(x)=Asin(ωx+φ)+b($A>0,ω>0,|φ|<\frac{π}{2}$)的圖象上相鄰的一個(gè)最大值點(diǎn)與對(duì)稱中心分別為($\frac{π}{18}$,3)、$(\frac{2π}{9},0)$,則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.($\frac{2kπ}{3}-\frac{π}{9}$,$\frac{2kπ}{3}+\frac{2π}{9}$),k∈ZB.($\frac{2kπ}{3}$-$\frac{4π}{9}$,$\frac{2kπ}{3}$-$\frac{π}{9}$),k∈Z
C.($\frac{2kπ}{3}$+$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{7π}{18}$),k∈ZD.($\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}-\frac{π}{18}$),k∈Z

分析 根據(jù)圖象上相鄰的一個(gè)最大值點(diǎn)與對(duì)稱中心分別為($\frac{π}{18}$,3)、$(\frac{2π}{9},0)$即可求解A,ω,φ的值,可得解析式,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的單調(diào)區(qū)間上,解不等式得函數(shù)的單調(diào)區(qū)間;

解答 解:由題意,對(duì)稱中心為($\frac{2π}{9}$,0),可得b=0.
圖象上相鄰的一個(gè)最大值點(diǎn)與對(duì)稱中心分別為($\frac{π}{18}$,3)、$(\frac{2π}{9},0)$,
∴$\frac{1}{4}$T=$\frac{2π}{9}-\frac{π}{18}$,即T=$\frac{2π}{3}$,
∴$ω=\frac{2π}{T}=3$.
∴A=-3.
故得f(x)=-3sin(3x+φ).將對(duì)稱中心帶入可得:sin($\frac{2π}{3}$+φ)=0.
得:$\frac{2π}{3}$+φ=kπ,k∈Z,
∵|φ|$<\frac{π}{2}$
∴φ=$-\frac{π}{3}$.
∴得f(x)=-3sin(3x-$\frac{π}{3}$)
令$-\frac{3π}{2}+2kπ≤$3x-$\frac{π}{3}$$≤-\frac{π}{2}+2kπ$,k∈Z
解得:$\frac{2}{3}kπ-\frac{7π}{18}≤x≤$$\frac{2}{3}kπ-\frac{π}{18}$.
故選D

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用已知條件求出函數(shù)的解析式是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.關(guān)于x的不等式2x2+ax-a2>0的解集中的一個(gè)元素為2,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(4,+∞)B.(-4,1)C.(-∞,-2)∪(1,+∞)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在等差數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn,若$\left\{{\frac{S_n}{n}}\right\}$為公差是1的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列${b_n}=\frac{1}{{{a_n}{a_{n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=alnx+\frac{1}{2}{x^2}-({1+a})x({a∈R})$.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx.
(1)證明:f(x)≤x-1;
(2)若對(duì)任意x>0,不等式$f(x)≤ax+\frac{a-1}{x}-1$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.把4名中學(xué)生分別推薦到3所不同的大學(xué)去學(xué)習(xí),每個(gè)大學(xué)至少收一名,全部分完,不同的分配方案數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若三棱錐P-ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,則三棱錐P-ABC的外接球的體積為(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某工廠生產(chǎn)一種產(chǎn)品的成本費(fèi)共由三部分組成:①原材料費(fèi)每件50元;②職工工資支出7500+20x元;③電力與機(jī)器保養(yǎng)等費(fèi)用為 x2-30x+600元(其中x為產(chǎn)品件數(shù)).
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該產(chǎn)品是供不應(yīng)求的商品,根據(jù)市場(chǎng)調(diào)查,每件產(chǎn)品的銷售價(jià)為 Q(x)=1240-$\frac{1}{30}{x^2}$,試問(wèn)當(dāng)產(chǎn)量處于什么范圍時(shí),工廠處于生產(chǎn)潛力提升狀態(tài)(生產(chǎn)潛力提升狀態(tài)是指如果產(chǎn)量再增加,則獲得的總利潤(rùn)也將隨之增大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

數(shù)列{an}中,an+1·an=an+1-1,且a2011=2,則前2 011項(xiàng)的和等于_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案