14.在平面直角坐標(biāo)系xOy中,已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)為F1(-1,0),且橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為$\sqrt{2}-1$.
(1)求橢圓C1的方程;
(2)設(shè)直線l過點(diǎn)$({0,\sqrt{2}})$且與橢圓C1相切,求直線l的方程.

分析 (1)利用已知條件求出c,a,然后求出b,即可得到橢圓方程.
(2)判斷直線的斜率是存在的,設(shè)出直線方程與橢圓方程聯(lián)立,利用相切判別式為0,求解直線斜率得到直線方程.

解答 解:(1)橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)為F1(-1,0),可得c=1,
且橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為$\sqrt{2}-1$.即a-c=$\sqrt{2}-1$,∴a=$\sqrt{2}$,b=1.
橢圓C1的方程:$\frac{x^2}{2}+{y^2}=1$.
 (2)由題意,顯然設(shè)直線l必存在斜率,又直線過點(diǎn)$({0,\sqrt{2}})$,
∴設(shè)所求直線l的方程為:$y=kx+\sqrt{2}$,
聯(lián)立:$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=kx+\sqrt{2}\end{array}\right.$,
消元化簡得:$({2{k^2}+1}){x^2}+4\sqrt{2}kx+2=0$,
要使直線l與此橢圓相切,只需:$△={({4\sqrt{2}k})^2}-4({2{k^2}+1})×2=0$,
解得${k^2}=\frac{1}{2},k=±\frac{{\sqrt{2}}}{2}$,
所以所求直線方程為:$y=\frac{{\sqrt{2}}}{2}x+\sqrt{2}或y=-\frac{{\sqrt{2}}}{2}x+\sqrt{2}$,
即:$x-\sqrt{2}y+2=0或x+\sqrt{2}y+2=0$(12分).

點(diǎn)評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,三個(gè)內(nèi)角∠A,∠B,∠C所對的邊分別為a,b,c,sin2A-sin2C=sinAsinB-sin2B.
(1)求∠C的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$=4,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求值:sin$\frac{13π}{4}$•cos$\frac{43π}{6}$+cos(-$\frac{π}{6}$)•sin$\frac{5π}{4}$+tan$\frac{3π}{4}$;
(2)已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=asinωx+bcosωx(ω>0,a<0)的最小正周期為π,$(-\frac{π}{6},0)$是函數(shù)f(x)圖象的一個(gè)對稱中心,且曲線y=f(x)在該點(diǎn)處切線的斜率為-8.
(1)求a,b,ω的值;
(2)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值;
(3)若函數(shù)y=g(x)的圖象與函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{24}$對稱,判斷:曲線y=g(x)上是否存在與直線2x+19y+c=0(c為常數(shù))垂直的切線?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.PA垂直于⊙O所在平面,B在⊙O上,AC是直徑,AE⊥BP于E點(diǎn)
(1)求證:AE⊥面PBC;
(2)若PA=AB=BC=6,求點(diǎn)B到平面AEO的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.焦點(diǎn)為F(0,5),漸進(jìn)線方程為4x±3y=0的雙曲線的方程是( 。
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=1$C.$\frac{y^2}{36}-\frac{x^2}{64}=1$D.$\frac{x^2}{64}-\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“x=2”是“x2+2x-8=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“若x2<1,則-1<x<1”x∈R的逆否命題和真假性分別為( 。
A.若x2≥1,則x≥1或x≤-1;假命題B.若-1<x<1,則x2<1;假命題
C.若x>1或x<-1,則x2>1;真命題D.若x≥1或x≤-1,則x2≥1;真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,且$(λ\overrightarrow a+\overrightarrow b)⊥(2\overrightarrow a-λ\overrightarrow b)$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則λ=$-1±\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案