已知圓,直線上至少存在一點(diǎn),使得以點(diǎn)為原心,半徑為1的圓與圓有公共點(diǎn),則的最小值是( )

A. B. C. D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年內(nèi)蒙古高二文上月考一數(shù)學(xué)試卷(解析版) 題型:填空題

已知為橢圓的兩個(gè)焦點(diǎn),過(guò)的直線交橢圓于A、B兩點(diǎn),若

,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

如圖,四邊形為梯形,,,求圖中陰影部分繞旋轉(zhuǎn)一周形成的幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

的圓心坐標(biāo)和半徑分別為( )

A.(0,2),2 B.(2,0),2 C.(-2,0),4 D.(2,0),4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:填空題

如圖,正方體的棱長(zhǎng)為1,點(diǎn),,且,有以下四個(gè)結(jié)論:

;②;③平面;④是異面直線.其中正確命題的序號(hào)是_______.(注:把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知${F_1}(-\sqrt{3},0),{F_2}(-\sqrt{3},0)$為橢圓C的左右焦點(diǎn),點(diǎn)$(-\sqrt{3},\frac{1}{2})$在橢圓C上
(1)求橢圓C的方程;
(2)過(guò)F2的直線交橢圓C與A、B兩點(diǎn),圓M為△ABF1的內(nèi)切圓,求圓M的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.
(Ⅰ)若點(diǎn)P為AA1的中點(diǎn),求證:平面B1CP⊥平面B1C1P;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得二面角B1-CP-C1的大小為60°?若存在,求出|AP|的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD,BC=4,點(diǎn)M為PC中點(diǎn),點(diǎn)E為BC邊上的動(dòng)點(diǎn),且$\frac{BE}{EC}=λ$.
(Ⅰ)求證:DM∥平面PAB;  
(Ⅱ)求證:平面ADM⊥平面PBC;
(Ⅲ)是否存在實(shí)數(shù)λ,使得二面角P-DE-B的余弦值為$\frac{2}{3}$?若存在,試求出實(shí)數(shù)λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=a(lnx-x)-3(a∈R,a≠0)的圖象在點(diǎn)(2,f(2))處的切線斜率為1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意t∈[0,1],函數(shù)g(x)=x3+x2($\frac{m}{2}$+f′(x))在區(qū)間(t,2)上總存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案