在任意兩個正整數(shù)間,定義某種運(yùn)算(用⊕表示運(yùn)算符號),當(dāng)m、n都是正偶數(shù)或都是正奇數(shù)時,m⊕n=m+n,當(dāng)m、n中其中一個為正偶數(shù),另一個是正奇數(shù)時,m⊕n=m•n,則在上述定義中集合M={(a,b)|a⊕b=12,a,b∈N*}的元素的個數(shù)為
 
考點(diǎn):元素與集合關(guān)系的判斷
專題:集合
分析:由⊕的定義,a⊕b=12分兩類進(jìn)行考慮:a和b一奇一偶,則ab=12;a和b同奇偶,則a+b=12.由a、b∈N*列出滿足條件的所有可能情況,計(jì)數(shù)可得答案.
解答: 解:∵a⊕b=12,a、b∈N*
若a和b一奇一偶,則ab=12,滿足此條件的有1×12=3×4,故點(diǎn)(a,b)有4個;
若a和b同奇偶,則a+b=12,滿足此條件的有1+11=2+10=3+9=4+8=5+7=6+6共6組,故點(diǎn)(a,b)有2×6-1=11個,
所以滿足條件的個數(shù)為4+11=15個.
故答案為:15.
點(diǎn)評:本題為新定義問題,考查對新定義和集合的理解,正確理解新定義的含義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知0<x<1,求證:
lnx
2
<-
1-x
1+x
;
(Ⅱ)已知k為正常數(shù),且a>0,曲線C:y=ekx上有兩點(diǎn)P(a,eka),Q(-a,e-ka),分別過點(diǎn)P和Q作曲線C的切線,求證:兩切線的交點(diǎn)的橫坐標(biāo)大于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,AB=2DC=2AD=2,∠DAB=∠ADC=90°,將△DBC沿BD向上折起,使面ABD垂直于面BDC,則三棱錐C-DAB的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正實(shí)數(shù)且
2
x
+
1
y
=1,若x+2y≥m2-5m-6恒成立,則m范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1,4,7,…3n+1的所有項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
(1)“cosα=-
3
2
”是“α=2kπ+
6
,k∈Z”的必要不充分條件;
(2)終邊在y軸上的角的集合是{a|a=
2
,k∈Z}.
(3)函數(shù)y=sin(2x-
π
3
)的一個單調(diào)增區(qū)間是[-
π
12
12
];
(4)設(shè)f(x)=sin(ωx+φ),其中ω>0,則f(x)是偶函數(shù)的充要條件是f′(0)=0;
(5)為得到函數(shù)y=cos(2x+
π
3
)的圖象,只需將函數(shù)y=sin2x的圖象向左平移
12
個長度單位.
其中真命題的序號是
 
(把所有真命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(A,B)是兩個集合,稱(A,B)為一對子.當(dāng)A≠B時,將(A,B)與(B,A)視為不同對子.滿足條件A∪B={1,2,3,4}的不同對子(A,B)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 
1
0
(2x-
1-x2
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-4y2=4的離心率為( 。
A、
5
2
B、
3
2
C、4
3
D、
5

查看答案和解析>>

同步練習(xí)冊答案