A. | (-∞,$-2{e}^{-\frac{3}{2}}$) | B. | (-∞,1] | C. | (-2,0)∪(0,1] | D. | (-∞,$-2{e}^{-\frac{3}{2}}$]∪{1} |
分析 函數(shù)f(x)=(x2-2mx+m2)lnx(x>0),f′(x)=(2x-2m)lnx+(x-2m+$\frac{{m}^{2}}{x}$)=$\frac{x-m}{x}$(2xlnx+x-m).當(dāng)x>1且x>m時(shí),即x>max(1,m)時(shí),f′(x)>0,可得函數(shù)f(x)單調(diào)遞增,滿足函數(shù)f(x)取極值.對(duì)m分類討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值即可得出.
解答 解:函數(shù)f(x)=(x2-2mx+m2)lnx(x>0),f′(x)=(2x-2m)lnx+(x-2m+$\frac{{m}^{2}}{x}$)=$\frac{x-m}{x}$(2xlnx+x-m).
當(dāng)x>1且x>m時(shí),即x>max(1,m)時(shí),f′(x)>0,∴函數(shù)f(x)單調(diào)遞增,滿足函數(shù)f(x)無極值.
①m>1時(shí),只要求x∈(0,m)時(shí),f′(x)≥0即可,只需2xlnx+2x-m≤0即可.∴m≥2x+2xlnx,
令g(x)=x+2xlnx,g′(x)=3+2lnx,可得函數(shù)g(x)的圖象:
∴m>g(m)=m+2mlnm,解得:m<1,舍去.
②m=1時(shí),只要求x∈(0,1)時(shí),f′(x)≥0即可,即1≥g(x).
而g(x)max=g(1)=1,成立,即m=1滿足條件.
③當(dāng)0<m<1時(shí),只要求x∈(0,1)時(shí),f′(x)≥0即可,∴m≥g(x)max=g(1)=1,不符合題意,舍去.
④當(dāng)m≤0時(shí),只要求x∈(0,1)時(shí),f′(x)≥0即可,∴m≤g(x)min=$g({e}^{-\frac{3}{2}})$=-2${e}^{-\frac{3}{2}}$,即m≤-2${e}^{-\frac{3}{2}}$.
綜上可得:m的取值范圍是$(-∞,-2{e}^{-\frac{3}{2}}]$∪{1}.
故選:D.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、分類討論思想方法,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆山東濰坊臨朐縣高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:填空題
已知上的不間斷函數(shù)滿足:①當(dāng)時(shí),恒成立;②對(duì)任意的都有.又函數(shù)滿足:對(duì)任意的,都有成立,當(dāng)時(shí),.若關(guān)于的不等式,對(duì)于恒成立,則的取值范圍為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(文)試卷(解析版) 題型:解答題
如圖所示,在四棱錐中,底面為菱形,為與的交點(diǎn),平面,為中點(diǎn),為中點(diǎn).
(1)證明:直線平面;
(2)若點(diǎn)為中點(diǎn),,,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知全集為,集合,,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 3.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. | 在犯錯(cuò)誤的概率不超過0.5的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)” | |
B. | 在犯錯(cuò)誤的概率不超過0.5的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)” | |
C. | 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)” | |
D. | 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com