已知函數(shù)f(x)=(ax+1)a-x,a>0且a≠1,討論f(x)的單調(diào)性,并求出極值點(diǎn)x0
分析:先求函數(shù)f(x)的導(dǎo)函數(shù)f'(x),然后求出f'(x)=0的值,討論a與1的大小,分別求解不等式fˊ(x)>0和fˊ(x)<0,即可求出函數(shù)f(x)的單調(diào)區(qū)間,從而得到極值點(diǎn)x0
解答:解:f'(x)=aa-x-a-xlna(ax+1)
令f'(x)=0,解得x=
a-lna
alna

當(dāng)0<a<1時(shí),令f'(x)<0,解得x∈(-∞,
a-lna
alna
)

令f'(x)>0,解得x∈(
a-lna
alna
,+∞)

∴f(x)在(-∞,
a-lna
alna
)
上單調(diào)遞減,在(
a-lna
alna
,+∞)
上單調(diào)遞增,
當(dāng)a>1時(shí),令f'(x)>0,解得x∈(-∞,
a-lna
alna
)

令f'(x)<0,解得x∈(
a-lna
alna
,+∞)

f(x)在上(
a-lna
alna
,+∞)
單調(diào)遞減,在(-∞,
a-lna
alna
)
上單調(diào)遞增.
極值點(diǎn)x0=
a-lna
alna
點(diǎn)評(píng):本題主要考查了指數(shù)函數(shù)的導(dǎo)數(shù),以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查計(jì)算能力和分析問題的能力,分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案