4.已知正方形ABCD的邊長為2,邊AB,CD分別為圓柱上下底面的直徑,若一螞蟻從點A沿圓柱的表面爬到點C,則該螞蟻所走的最短路程為$\sqrt{{π^2}+4}$.

分析 沿母線AD剪開再展開,則螞蟻所走的最短路程為右圖中直線段AC的長,由圓的周長公式求出BC,再由勾股定理求得答案.

解答 解:如圖,

圓的底面半徑為r=1,半圓周長為π,AB=2,
∴螞蟻所走的最短路程為AC=$\sqrt{{π}^{2}+4}$.
故答案為:$\sqrt{{π^2}+4}$.

點評 本題考查旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象能力和思維能力,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若(1+2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{2}$-$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$-…-$\frac{{a}_{2016}}{{2}^{2016}}$的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,a=3,b=2$\sqrt{6}$,∠B=2∠A.
(1)求cosA的值; 
 (2)求AB邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在三棱錐P-ABC中,PA=PB=PC=3,AB=$\sqrt{6}$,BC=$\sqrt{3}$,AB⊥BC,E,F(xiàn)為PC的三等分點.
(1)求證:面PAC⊥面ABC.
(2)求:VA-BEF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知復(fù)數(shù)z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.當m為何值時,z為:
(1)實數(shù);     
(2)虛數(shù);    
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=$\sqrt{1-x}$-$\sqrt{x}$的定義域為( 。
A.[0,1]B.(0,1]C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.對任意復(fù)數(shù)ω1,ω2,定義ω121$\overline{{ω}_{2}}$,其中$\overline{{ω}_{2}}$是ω2的共軛復(fù)數(shù).
對任意復(fù)數(shù)z1,z2,z3,有如下三個命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3); ②(z1*z2)*z3=z1*(z2*z3); ③z1*z2=z2*z1;.
則真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.參數(shù)方程$\left\{{\begin{array}{l}{x={{cos}^2}θ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ為參數(shù))表示的曲線是(  )
A.直線B.C.線段D.射線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如表:
年產(chǎn)量/畝年種植成本/畝每噸售價
黃瓜4噸1.2萬元0.55萬元
韭菜5噸0.9萬元0.3萬元
則一年的種植總利潤(總利潤=總銷售收入-總種植成本最大值為45萬元.

查看答案和解析>>

同步練習冊答案