16.已知函數(shù)f(x)=2x3-12x2+18x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)求函數(shù)f(x)在[-1,4]上的最值.

分析 (1)求出f′(x)=6x2-24x+18=6(x2-4x+3),利用導(dǎo)數(shù)性質(zhì)能示求出函數(shù)f(x)的單調(diào)區(qū)間.
(2)x、f′(x)、f(x)的取值變化情況列表討論,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)在[-1,4]上的最值.

解答 (本小題滿分12分)
解:(1)∵f(x)=2x3-12x2+18x+1,
∴f′(x)=6x2-24x+18=6(x2-4x+3),
令f′(x)>0,得x>3或x<1,
令f′(x)<0,得1<x<3,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,1)(3,+∞),單調(diào)減區(qū)間為(1,3).…(6分)
(2)x、f′(x)、f(x)的取值變化情況如下表

x-1(-1,1)1(1,3)3(3,4)4
f′(x)+0-0+
f(x)-31極大值極小值9
f(1)=9,f(3)=1,
由上表可知,函數(shù)f(x)在[-1,4]上的最大值9,最小值-31.…(12分)

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)區(qū)間的求法,考查函數(shù)在閉區(qū)間上的最值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.曲線y=lnx上的點(diǎn)到直線y=x+1的最短距離是( 。
A.$\sqrt{2}$B.2C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-x+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{\frac{1}{2},2}]$上的極值及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(x∈R).
(Ⅰ)若函數(shù)y=f(x)在(0,+∞)上為增函數(shù),求a的取值范圍;
(Ⅱ)若a=1,當(dāng)x>1時(shí),求證:f(x)>x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如果集合P={x|x>-1},那么( 。
A.0⊆PB.{0}∈PC.∅∈PD.{0}⊆P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出下列三個(gè)函數(shù)
(1)f(x)=$\sqrt{9-{x^2}}+\sqrt{{x^2}-9}$
(2)f(x)=(x+1)•$\sqrt{\frac{1-x}{1+x}}$
(3)f(x)=$\frac{{\sqrt{4-{x^2}}}}{{|{x+3}|-3}}$
其中具有奇偶性的函數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.閱讀下列命題:
①若點(diǎn)P(a,2a) (a≠0)為角α終邊上一點(diǎn),則sin α=$\frac{2\sqrt{5}}{5}$;
②同時(shí)滿足sin α=$\frac{1}{2}$,cos α=$\frac{\sqrt{3}}{2}$的角有且只有一個(gè);
③設(shè)tan α=$\frac{1}{2}$且π<α<$\frac{3π}{2}$,則sin α=-$\frac{\sqrt{5}}{5}$;
④函數(shù)y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函數(shù)
其中正確命題的序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=a(x-lnx)+$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=$\frac{1}{2}$時(shí),證明:f(x)>f′(x)+$\frac{5}{4}$對(duì)于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知命題p1:函數(shù)y=2x-2-x在R上為增函數(shù),
p2:函數(shù)y=2x+2-x在R上為減函數(shù),則在命題
①p1∨p2②p1∧p2③(¬p1)∨p2④p1∧(¬p2)中真命題是①④.

查看答案和解析>>

同步練習(xí)冊(cè)答案