【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)交曲線于點(diǎn).

1)求曲線的參數(shù)方程;

2)求面積的最大值.

【答案】1為參數(shù));(2.

【解析】

1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;

2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.

1)由于曲線的參數(shù)方程為為參數(shù)),

將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,

則曲線的參數(shù)方程為為參數(shù));

2)將曲線的參數(shù)方程化為普通方程得,

化為極坐標(biāo)方程得,即,

設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為

將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,

的面積為,

當(dāng)時(shí),的面積取到最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),實(shí)數(shù).

1)討論函數(shù)在區(qū)間上的單調(diào)性;

2)若存在,使得關(guān)于x的不等式成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,ADCDABCDAB3,AD4,AE5,

1)證明:DF∥平面BCE

2)求A到平面BEDF的距離,并求四棱錐ABEDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),共享單車(chē)在我國(guó)各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來(lái)了一些困難,為掌握共享單車(chē)在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車(chē)的指標(biāo)指標(biāo),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)

2

4

5

6

8

指標(biāo)

3

4

4

4

5

1)試求間的相關(guān)系數(shù),并說(shuō)明是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒(méi)有較強(qiáng)的線性相關(guān)關(guān)系).

2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值.

3)若某城市的共享單車(chē)指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車(chē)數(shù)量過(guò)多,對(duì)城市的交通管理有較大的影響交通管理部門(mén)將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車(chē)的指標(biāo)為13,則該城市的交通管理部門(mén)是否需要進(jìn)行治理?試說(shuō)明理由.

參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),

1)求的單調(diào)區(qū)間和最小值;

2)討論的大小關(guān)系;

3)求a的取值范圍,使得對(duì)任意成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足

1)求a1,a2,a3的值;

2)對(duì)任意正整數(shù)n,an小數(shù)點(diǎn)后第一位數(shù)字是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知F是拋物線C:的焦點(diǎn),過(guò)E(﹣l,0)的直線與拋物線分別交于A,B兩點(diǎn)(點(diǎn)A,B在x軸的上方).

(1)設(shè)直線AF,BF的斜率分別為,證明:;

(2)若ABF的面積為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,,為橢圓的左、右焦點(diǎn),M為橢圓上任意一點(diǎn),若的面積最大值為1.

1)求橢圓C的方程;

2)設(shè)不過(guò)原點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A、B,若直線l的斜率是直線、斜率的等比中項(xiàng),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知函數(shù)fx)=-2lnxx22axa2,其中a>0.

)設(shè)gx)為fx)的導(dǎo)函數(shù),討論gx)的單調(diào)性;

)證明:存在a∈0,1),使得fx≥0恒成立,且fx)=0在區(qū)間(1,+)內(nèi)有唯一解.

查看答案和解析>>

同步練習(xí)冊(cè)答案