18.已知sin($\frac{3π}{2}$+α)=$\frac{1}{3}$,則cos(π-2α)的值等于( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.$\frac{2}{9}$D.-$\frac{2}{3}$

分析 由已知利用誘導(dǎo)公式求得cosα,再由誘導(dǎo)公式及二倍角的余弦求得cos(π-2α)的值.

解答 解:由sin($\frac{3π}{2}$+α)=$\frac{1}{3}$,得-cos$α=\frac{1}{3}$,cos$α=-\frac{1}{3}$.
∴cos(π-2α)=-cos2α=1-2cos2α=$1-2×(-\frac{1}{3})^{2}=\frac{7}{9}$.
故選:A.

點(diǎn)評 本題考查利用誘導(dǎo)公式及倍角公式化簡求值,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{ an}滿足a1=a,an+1=$\frac{1}{2-{a}_{n-1}}$(n∈N*).
(1)求a2,a3,a4
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在數(shù)列{an}中,${a_1}=3,{a_n}=\sqrt{{a_{n-1}}^s+t(n)},{b_n}={a_n}+2$,n=2,3,….
(1)若s=2,t(n)=n時,求數(shù)列{an}的通項公式;
(2)若s=1,t(n)=2時,求a2,a3,判斷數(shù)列{an}的單調(diào)性并證明;
(3)在(2)的條件下,是否存在常數(shù)M,對任意n≥2,有b2b3…bn≤M?若存在,求出M的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,A,B,C所對的邊分別為a,b,c,若1+$\frac{tanA}{tanB}$+$\frac{2c}$=0,則A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2},x<0\end{array}$,則f(f(-3))的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知p:“?x>0,有l(wèi)nx+1≤x<ex成立”,q:“十進(jìn)制數(shù)2017轉(zhuǎn)化為八進(jìn)制數(shù)為1473(8)”,則下列命題為真的是( 。
A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果a>b,則下列不等式正確的是( 。
A.$\frac{1}{a}>\frac{1}$B.2a>2bC.|a|>|b|D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為45°,且λ$\overrightarrow$-$\overrightarrow{a}$與$\overrightarrow{a}$垂直,則實(shí)數(shù)λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a=2${\;}^{-\frac{1}{3}}$,b=log${\;}_{\frac{1}{4}}$3,c=log25,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

同步練習(xí)冊答案