9.函數(shù)f(x)=2ex的圖象在點(diǎn)(0,f(0))處的切線方程為2x-y+2=0.

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),運(yùn)用斜截式方程,可得切線的方程.

解答 解:函數(shù)f(x)=2ex的導(dǎo)數(shù)為f′(x)=2ex,
可得圖象在點(diǎn)(0,f(0))處的切線斜率為k=2e0=2,
切點(diǎn)為(0,2),
則圖象在點(diǎn)(0,f(0))處的切線方程為y=2x+2.
即為2x-y+2=0.
故答案為:2x-y+2=0.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用斜截式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,${a_1}=-\frac{1}{2},2{S_{n+1}}={S_n}-1({n∈{N^*}})$
(I)求證:數(shù)列{Sn+1}是等比數(shù)列
(II)求數(shù)列{(1-2n)an}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a=({cos{{45}°},sin4{5°}})$,$\vec b=({cos{{15}°},sin{{15}°}})$,$\vec a•\vec b$=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex
(Ⅰ)求曲線f(x)過O(0,0)的切線l方程;
(Ⅱ)求曲線f(x)與直線x=0,x=1及x軸所圍圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=(x-3)3+(x-1),數(shù)列{an}是公差不為零的等差數(shù)列,f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)y=2x2+lnx的二階導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2ex,則(  )
A.f′(x)=f(x)+2B.f′(x)=f(x)C.f′(x)=3f(x)D.f′(x)=2f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知λ∈R,向量$\overrightarrow a=({3,λ})\;,\;\overrightarrow b=({λ-1\;,\;2})$,則“λ=3”是“$\overrightarrow a∥\overrightarrow b$”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在棱長為2的正方體OABC-O′A′B′C′中,E,F(xiàn)分別是棱AB,BC上的動點(diǎn).
(1)當(dāng)AE=BF時,求證A′F⊥C′E;
(2)若E,F(xiàn)分別為AB,BC的中點(diǎn),求直線O′B與平面B′EF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案