8.如圖:已知BD為△ABC的中線,若AB=3,BD=BC,則△ABC的面積的最大值是3.

分析 作BO⊥AC于點(diǎn)O,則可求BO=3sinA,AO=3cosA,由條件可求AC=$\frac{4}{3}$AO=4cosA,利用三角形面積公式即可計(jì)算得解.

解答 解:∵BD為△ABC的中線,若AB=3,BD=BC,
∴作BO⊥AC于點(diǎn)O,BO=3sinA,AO=3cosA,
由條件可得:AC=$\frac{4}{3}$AO=4cosA,
∴S△ABC=$\frac{1}{2}AC×BO$=3sin2A≤3.
故答案為:3.

點(diǎn)評 本題主要考查了三角函數(shù)的定義,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{6}$x3-ax(lnx-1)+$\frac{f′(1)}{2}x$(a∈R且a≠0).
(Ⅰ)設(shè)函數(shù)g(x)=$\frac{1}{6}$x3+$\frac{x}{2}$-f(x),求函數(shù)g(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),設(shè)函數(shù)h(x)=f′(x)-$\frac{1}{2}$;
①若h(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
②證明:ln(1•2•3…n)2e<12+22+32+…+n2(n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知積分估值定理:如果函數(shù)f(x)在[a,b](a<b)上的最大值和最小值分別為M,m,那么m(b-a)≤$\int_a^b$f(x)dx≤M(b-a),根據(jù)上述定理,定積分$\int_{-1}^2{{2^{-{x^2}}}}$dx的估值范圍是[$\frac{3}{16}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(x-m-9)<0}
(1)求A∩B;
(2)若A⊆C,求實(shí)數(shù) m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點(diǎn)P(8,1)平分雙曲線x2-4y2=4的一條弦,則這條弦所在直線的斜率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.二項(xiàng)式(ax-$\frac{\sqrt{3}}{6}$)3(a>0)的展開式的第二項(xiàng)的系數(shù)為-$\frac{\sqrt{3}}{2}$,則${∫}_{0}^{a}$($\sqrt{2x-{x}^{2}}$-x)dx的值為( 。
A.$\frac{π-2}{4}$B.$\frac{π-2}{2}$C.$\frac{π-1}{2}$D.$\frac{π-1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△ABC中,sin$\frac{1}{2}$∠ABC=$\frac{{\sqrt{3}}}{3}$,AB=2,點(diǎn)D為線段AC上一點(diǎn),過D作DE垂直于AB與E,作DF垂直于BC與F.
(1)若AD=2DC,則BD=$\frac{{4\sqrt{3}}}{3}$,求BC的長.
(2)在(1)的結(jié)論下,若點(diǎn)D為線段AC上運(yùn)動,求△DEF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=ln(2x-x2)的單調(diào)遞減區(qū)間為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=x2+$\frac{2}{x}$-alnx(a>0)有唯一零點(diǎn)x0,且m<x0<n(m,n為相鄰整數(shù)),則m+n的值為(  )
A.1B.3C.5D.7

查看答案和解析>>

同步練習(xí)冊答案