如圖,四棱錐的底面是正方形,⊥平面,

(1)求證:;
(2)求二面角的大小.
(1)證明見解析;(2)

試題分析:(1)要證線線垂直,一般通過證明線面垂直來實現(xiàn),那么我們就要尋找圖形中已有哪些與待證線垂直的直線,本題中首先由已知有,又有平面,則,故可證明與過的平面垂直,從而得線線垂直;(2)要求二面角的大小,一般須根據(jù)定義作出二面角的平面角,在三角形中解出,而平面角就是要與二面角的棱垂直的直線(射線),題中棱是,在兩個面(半平面)內(nèi)與垂直的直線是哪個呢?注意到已知,因此有,從而都是以為底邊的等腰三角形,故垂直關(guān)系就是取底邊中點,根據(jù)等腰三角形的性質(zhì)有,,就是我們要找的平面角.
試題解析:(1)連接BD,∵⊥平面
平面
∴AC⊥SD         4分
又四邊形ABCD是正方形,∴AC⊥BD
∴AC ⊥平面SBD
∴AC⊥SB.         6分

(2)設(shè)的中點為,連接、,
∵SD=AD,CS=CA,
∴DE⊥SA, CE⊥SA.
是二面角的平面角.     9分
計算得:DE=,CE=,CD=2,則CD⊥DE.
,
所以所求二面角的大小為 .   12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面底面,且為等腰直角三角形,,、分別為、的中點.

(1)求證://平面 ;
(2)若線段中點為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形是正方形,平面,,,,,分別為,,的中點.

(1)求證:平面;
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知是圓的直徑,垂直圓所在的平面,是圓上任一點,是線段的中點,是線段上的一點.

求證:(Ⅰ)若為線段中點,則∥平面
(Ⅱ)無論何處,都有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點。

(Ⅰ)求證:平面FGH⊥平面AEB;
(Ⅱ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.

(1)求證:∥平面;
(2)求證:AC⊥BC1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四棱錐P-ABCD中,底面ABCD是平行四邊形,,,若平面BDE,則的值為 (   )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線和平面,下列推論中錯誤的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線,平面,且,給出下列命題: 
①若,則m⊥;      ②若,則m∥;
③若m⊥,則;      ④若m∥,則.其中正確命題的個數(shù)是(   )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案