【題目】如圖所示在四棱錐中,下底面為正方形,平面平面,為以為斜邊的等腰直角三角形,,若點是線段上的中點.
(1)證明平面.
(2)求二面角的平面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)為的中點,為的中點,有,再根據(jù)線面平行的判定理證明.
(2)取中點,由平面平面,得平面,即,,倆倆垂直,以,,為,,軸建立空間直角坐標系,分別求得平面的一個法向量,平面的一個法向量,再利用面面角的向量法求解.
(1)連結,相交于點,連結,,
為的中點,為的中點,
所以,
又因為平面,平面,
所以平面.
(2)取中點,中點,連結,,,,因為平面平面,所以平面,
即,,兩兩垂直.
以,,為,,軸建立空間直角坐標系如圖所示:
,,,,
,,
設平面的法向量為,
則,即,
令z1=1,,
,,
設平面的法向量為,
則,即,
令z2=1,
所以.
二面角的平面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.
(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;
(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是偶函數(shù),.
(1)求的值,并判斷函數(shù)在上的單調性,說明理由;
(2)設,若函數(shù)與的圖像有且僅有一個交點,求實數(shù)的取值范圍;
(3)定義在上的一個函數(shù),如果存在一個常數(shù),使得式子對一切大于1的自然數(shù)都成立,則稱函數(shù)為“上的函數(shù)”(其中,).試判斷函數(shù)是否為“上的函數(shù)”,若是,則求出的最小值;若不是,則說明理由.(注:).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在一次期末數(shù)學測試中,為統(tǒng)計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績全部介于65分到145分之間(滿分150分),將統(tǒng)計結果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計該校的2000名學生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修;坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知某圓的極坐標方程為:.
(Ⅰ)將極坐標方程化為普通方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com