已知.

(Ⅰ) 若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

(Ⅱ) 解關(guān)于的不等式.

 

【答案】

(1)(2){x|axa}.

【解析】

試題分析:解: (Ⅰ) 在區(qū)間上恒成立,即,

,   2分

,

,,

所以g(x)在上是增函數(shù),

所以g(x)的最小值是.

則實(shí)數(shù)的取值范圍是.  5分

(Ⅱ)∵Δ=4a2-8,

∴當(dāng)Δ<0,即-<a<時(shí),

原不等式對應(yīng)的方程無實(shí)根,原不等式的解集為;  6分

當(dāng)Δ=0,即a=±時(shí),原不等式對應(yīng)的方程有兩個(gè)相等實(shí)根.

當(dāng)a時(shí),原不等式的解集為{x|x},

當(dāng)a=-時(shí),原不等式的解集為{x|x=-};  8分

當(dāng)Δ>0,即aa<-時(shí),原不等式對應(yīng)的方程有兩個(gè)不等實(shí)根,分別為x1ax2a,且x1<x2,

∴原不等式的解集為{x|axa}.  11分

綜上,當(dāng)-<a<時(shí), 不等式的解集為;當(dāng)a時(shí),不等式的解集為};當(dāng)a=-時(shí),不等式的解集為{x|x=-};當(dāng)aa<-時(shí),不等式的解集為{x|axa}.  12分

考點(diǎn):一元二次不等式的解集

點(diǎn)評:主要是考查了二次函數(shù)的性質(zhì)以及二次不等式求解,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)都不相等的等差數(shù)列{an}的前六項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{
1bn
}
的前n項(xiàng)Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)不共線的向量
a
,
b
滿足
a
=(1,
3
),
b
=(cosθ,sinθ)(θ∈R)
,
(1)若2
a
-
b
a
-7
b
垂直,求向量
a
b
的夾角;
(2)當(dāng)θ∈[0,
π
2
]
時(shí),若存在兩個(gè)不同的θ使得|
a
+
3
b
|=|m
a
|
成立,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)都不相等的等數(shù)列{an}的前六項(xiàng)和為60,且a6為a1與a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式及an及前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{
1bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不重合的直線m、n,兩個(gè)互不重合的平面α、β,給出下列命題:
①若m⊥α,n⊥β,且m⊥n,則α⊥β;
②若m∥α,n∥β,且m∥n,則α∥β;
③若m⊥α,n∥β,則m⊥n,則α⊥β;
④若m⊥α,n∥β,且m∥n,則α∥β.
其中正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,a3是a1,a7的等比中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)Tn為數(shù)列{
1
anan+1
}
的前n項(xiàng)和,若Tn
1
λ
an+1
對一切n∈N*恒成立,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

同步練習(xí)冊答案