7.函數(shù)$y=\sqrt{{x^2}-3x-4}$的單調(diào)遞增區(qū)間是[4,+∞).

分析 由根式內(nèi)部的代數(shù)式大于等于0求出函數(shù)的定義域,再求出內(nèi)函數(shù)二次函數(shù)的增區(qū)間,結(jié)合復(fù)合函數(shù)的單調(diào)性可得原函數(shù)的增區(qū)間.

解答 解:由x2-3x-4≥0,解得x≤-1或x≥4.
則內(nèi)函數(shù)t=x2-3x-4在[4,+∞)上為增函數(shù),
由外函數(shù)y=${t}^{\frac{1}{2}}$為其定義域上的增函數(shù),
∴函數(shù)$y=\sqrt{{x^2}-3x-4}$的單調(diào)遞增區(qū)間是[4,+∞).
故答案為:[4,+∞).

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(Ⅰ)求證:$kC_n^k=nC_{n-1}^{k-1}$;
(Ⅱ)在數(shù)學(xué)上,常用符號(hào)來表示算式,如記$\sum_{i=0}^n{a_i}={a_0}+{a_1}+{a_2}+…+{a_n}$,其中i∈N,n∈N*
①若a0,a1,a2,…,an成等差數(shù)列,且a0=0,求證:$\sum_{i=0}^n{({a_i}•C_n^i})={a_n}•{2^{n-1}}$;
②若$\sum_{k=1}^{2n}{{{(1+x)}^k}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2n}}{x^{2n}}$,${b_n}=\sum_{i=0}^n{{a_{2i}}}$,記${d_n}=1+\sum_{i=1}^n{[{{(-1)}^i}}•{b_i}•C_n^i]$,且不等式t•(dn-1)≤bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,則AB=$\frac{3\sqrt{15}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有下列命題:
①?gòu)?fù)數(shù)z滿足|z-1|+|z+1|=2則復(fù)數(shù)z所對(duì)應(yīng)點(diǎn)Z的軌跡是一個(gè)橢圓;
②f′(x0)=$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0})}}{h}=\lim_{x→{x_0}}\frac{{f(x)-f({x_0})}}{{x-{x_0}}}$=$\lim_{h→0}\frac{{f({x_0})-f({x_0}-h)}}{h}$;
③將5封信投入3個(gè)郵筒,不同的投法共有53種;
④已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是$\frac{1}{3}$,那么另一組數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)和方差分別是4和3;
⑤若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值為9
其中正確的有:②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線經(jīng)過點(diǎn)(4,-2),則它的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖在直角梯形ABCP中,AP∥BC,AB=BC=$\frac{1}{2}$AP=2,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將△PCD沿CD折起,使得PD⊥平面ABCD,F(xiàn)為線段PD上一動(dòng)點(diǎn).當(dāng)二面角G-EF-D的大小為$\frac{π}{4}$時(shí),求FG與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線y2=4x的焦點(diǎn)F,過焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),則4|FA|+|FB|的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an},那么“對(duì)于任意的n∈N*,點(diǎn)Pn(n,an)都在曲線y=3x上”是“數(shù)列{an}為等比數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某學(xué)校在平面圖為矩形的操場(chǎng)ABCD內(nèi)進(jìn)行體操表演,其中AB=40,BC=16,O為AB上一點(diǎn),且BO=8,線段OC、OD、MN為表演隊(duì)列所在位置(M,N分別在線段OD、OC上),點(diǎn)P為領(lǐng)隊(duì)位置,且P到BC、CD的距離均為12,記OM=d,我們知道當(dāng)△OMN面積最小時(shí)觀賞效果最好.
(1)當(dāng)d為何值時(shí),P為隊(duì)列MN的中點(diǎn)?
(2)怎樣安排M的位置才能使觀賞效果最好?求出此時(shí)d的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案