已知函數(shù)f(x)=
x2
1+x2

(1)分別計(jì)算f(2)+f(
1
2
),f(3)+f(
1
3
),f(4)+f(
1
4
);
(2)歸納猜想一般結(jié)論,并給出證明;
(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
).
考點(diǎn):函數(shù)的值,歸納推理
專題:探究型
分析:(1)把x=2、
1
2
代入解析式求出f(2)+f(
1
2
)的值,同理可得f(3)+f(
1
3
)、f(4)+f(
1
4
)的值;
(2)根據(jù)(1)中式子的特點(diǎn)猜想:f(x)+f(
1
x
)=1
,再代入解析式化簡(jiǎn)求值;
(3)根據(jù)(2)證明的結(jié)論求出式子的值.
解答: 解:(1)由題意得,f(x)=
x2
1+x2
,
所以f(2)+f(
1
2
)=
22
1+22
+
(
1
2
)2
1+(
1
2
)2
=
22
1+22
+
1
1+22
=1,
同理可得,f(3)+f(
1
3
)=1,f(4)+f(
1
4
)=1;
(2)由(1)猜想:f(x)+f(
1
x
)=1
,
證明:f(x)+f(
1
x
)=
x2
1+x2
+
(
1
x
)
2
1+(
1
x
)
2
=
x2
1+x2
+
1
1+x2
=1;
(3)由(2)得,
原式=f(1)+[f(2)+f(
1
2
)]+[f(3)+f(
1
3
)]+…[f(2013)+f(
1
2013
)]
=
1
2
+2012=
4025
2
點(diǎn)評(píng):本題考查函數(shù)的值,以及歸納推理,由特殊的式子的特點(diǎn)和規(guī)律得到一般性的結(jié)論,再證明結(jié)論的成立,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

品酒師需定期接受酒味鑒別功能測(cè)試,一種通常采用的測(cè)試方法如下:拿出n瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這n瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測(cè)試.根據(jù)一輪測(cè)試中的兩次排序的偏離程度的高低為其評(píng)分.
現(xiàn)設(shè)n=4,分別以a1,a2,a3,a4表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號(hào),并令X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,則X是對(duì)兩次排序的偏離程度的一種描述.
(Ⅰ)寫出X的所有可能值組成的集合S;
(Ⅱ)假設(shè)a1,a2,a3,a4等可能地為1,2,3,4的各種排列,求S中每個(gè)元素出現(xiàn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地一填從6時(shí)至14時(shí)的溫度函數(shù)變化曲線近似滿足y=Asin(ωx+φ)+b(|φ|<π)
(1)求這段時(shí)間的最高和最低氣溫;
(2)求A,ω,φ,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的坐標(biāo)長(zhǎng)度相同,已知直線l的參數(shù)方程為
x=-1+tcosα
y=1+tsinα
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo);
(2)若直線l與曲線C相交弦長(zhǎng)為2
3
,求直線l的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出函數(shù)f(x)=loga 
1
x
(a>1 )的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,ABCD是平行四邊形,E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,
(1)證明:E、F、G、H四點(diǎn)共面;
(2)證明:平面EFGH∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
a
x
+lnx-1(a是常數(shù)),
(1)討論f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),方程f(x)=m在x∈[
1
e
,e]上有兩解,求m的取值范圍;(e≈2.71828)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

電視臺(tái)某廣告公司特約播放兩部片集,其中片集甲每片播放時(shí)間為20分鐘,廣告時(shí)間為1分鐘,收視觀眾為60萬(wàn);片集乙每片播放時(shí)間為10分鐘,廣告時(shí)間為1分鐘,收視觀眾為20萬(wàn),廣告公司規(guī)定每周至少有6分鐘廣告,而電視臺(tái)每周只能為該公司提供不多于86分鐘的節(jié)目時(shí)間(含廣告時(shí)間).
(1)問電視臺(tái)每周應(yīng)播放兩部片集各多少集,才能使收視觀眾最多;
(2)在獲得最多收視觀眾的情況下,片集甲、乙每集可分別給廣告公司帶來(lái)a和b(萬(wàn)元)的效益,若廣告公司本周共獲得1萬(wàn)元的效益,記S=
1
a
+
1
b
為效益調(diào)和指數(shù),求效益調(diào)和指數(shù)的最小值.(取
2
=1.41)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若a2-b2-c2=bc,則A=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案