已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為
 
考點(diǎn):球內(nèi)接多面體,棱錐的結(jié)構(gòu)特征
專題:計(jì)算題,空間位置關(guān)系與距離
分析:先利用正三棱錐的特點(diǎn),將球的內(nèi)接三棱錐問(wèn)題轉(zhuǎn)化為球的內(nèi)接正方體問(wèn)題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問(wèn)題,利用等體積法可實(shí)現(xiàn)此計(jì)算
解答: 解:∵正三棱錐P-ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接球O,
∵球O的半徑為
3

∴正方體的邊長(zhǎng)為2,即PA=PB=PC=2,
球心到截面ABC的距離即正方體中心到截面ABC的距離,
設(shè)P到截面ABC的距離為h,則正三棱錐P-ABC的體積V=
1
3
S△ABC×h=
1
3
S△PAB×PC=
1
3
×
1
2
×2×2×2=
4
3

△ABC為邊長(zhǎng)為2
2
的正三角形,S△ABC=
3
4
×(2
2
2=2
3

∴h=
V
S△ABC
=
2
3
3
,
∴球心(即正方體中心)O到截面ABC的距離為
3
-
2
3
3
=
3
3

故答案為:
3
3
點(diǎn)評(píng):本題主要考球的內(nèi)接三棱錐和內(nèi)接正方體間的關(guān)系及其相互轉(zhuǎn)化,棱柱的幾何特征,球的幾何特征,點(diǎn)到面的距離問(wèn)題的解決技巧,有一定難度,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組函數(shù)中表示同一函數(shù)的是( 。
A、f(x)=|x|,g(t)=
t2
B、y=x°和y=1
C、y=t和y=
t2
D、y=x-1和y=
x2-1
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用A(n,k)表示集合{1,2,…,n}的不含連續(xù)整數(shù)的k元子集的個(gè)數(shù),求A(n,k).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年巴西世界杯小組抽簽結(jié)果中,D組被稱為“死亡之組”.烏拉圭、英格蘭、意大利三個(gè)前世界杯冠軍與哥斯達(dá)黎加分在D組.烏拉圭、英格蘭、意大利三隊(duì)擬進(jìn)行一次熱身賽.已知他們?cè)谧罱膽?zhàn)績(jī)?nèi)缦拢阂獯罄c英格蘭的最近10戰(zhàn)中,意大利6勝2平2負(fù)占優(yōu),意大利與烏拉圭史上交戰(zhàn)8場(chǎng),烏拉圭2勝4平2負(fù)平分秋色,英格蘭與烏拉圭史上交戰(zhàn)10場(chǎng),烏拉圭4勝3平3負(fù)稍占優(yōu)勢(shì).小組賽采取單循環(huán)賽制(不分主客場(chǎng),每個(gè)對(duì)手間只打一場(chǎng)),勝一場(chǎng)積3分,平一場(chǎng)積1分,負(fù)一場(chǎng)積0分.在英格蘭、烏拉圭、意大利三支球隊(duì)中:
(1)求烏拉圭取得6分的概率;
(2)求烏拉圭得分的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述中正確的是
 

①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;
③垂直于同一直線的兩個(gè)平面相互平行;
④若兩個(gè)平面垂直,那么垂直于其中一個(gè)平面的直線與另一個(gè)平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PB⊥底面ABCD,AB∥CD,AD⊥AB,AB=2,AD=
2
,PB=3,E為CD上一點(diǎn),EC=3,DE=1.
(1)證明:BE⊥平面PBC;
(2)求三棱錐B-PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)=ax3+bx+c(a≠0)的圖象在點(diǎn)x=-1處的切線與直線6x+y+3=0平行,其導(dǎo)函數(shù)f′(x)的圖象經(jīng)過(guò)點(diǎn)(0,-12).
(1)求實(shí)數(shù)a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象如圖,其中y軸左側(cè)為一條線段,右側(cè)為一段拋物線,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓
x2
16
+
y2
4
=1內(nèi)的點(diǎn)M(1,1)為中點(diǎn)的弦所在直線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案