下列各組函數(shù)中表示同一函數(shù)的是( 。
A、f(x)=|x|,g(t)=
t2
B、y=x°和y=1
C、y=t和y=
t2
D、y=x-1和y=
x2-1
x+1
考點:判斷兩個函數(shù)是否為同一函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別求出四個答案中兩個函數(shù)的定義域,然后判斷是否一致,進(jìn)而化簡函數(shù)的解析式,再比較是否一致,進(jìn)而根據(jù)兩個函數(shù)的定義域和解析式均一致,則兩函數(shù)表示同一函數(shù),否則兩函數(shù)不表示同一函數(shù)得到答案.
解答: 解:f(x)=|x|,g(t)=
t2
兩個函數(shù)的定義域和解析式均一致,故A中兩函數(shù)表示同一函數(shù);
f(x)=1,g(x)=x0兩個函數(shù)的定義域不一致,故B中兩函數(shù)不表示同一函數(shù);
y=x°和y=1兩個函數(shù)的定義域不相同和解析式不同,故C中兩函數(shù)不表示同一函數(shù);
y=x-1和y=
x2-1
x+1
兩個函數(shù)的定義域不一致,故D中兩函數(shù)不表示同一函數(shù);
故選:A.
點評:本題考查的知識點是判斷兩個函數(shù)是否表示同一函數(shù),熟練掌握同一函數(shù)的定義,即兩個函數(shù)的定義域和解析式均一致或兩個函數(shù)的圖象一致,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(ex+
x2
2
,-x),
b
=(1,t)若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上存在增區(qū)間,則t的取值范圍為( 。
A、(-∞,e)
B、(-∞,e)
C、(-∞,e+1)
D、(-∞,e+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈(0,
π
2
),a=lnsinθ,b=2sinθ,c=(sinθ)cosθ,則( 。
A、c>b>a
B、b>a>c
C、a>b>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為sn,且s10=70,s20=60,則s30的值為( 。
A、-20B、30
C、-30D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象如圖所示,為了得到函數(shù)y=cos(ωx+
π
6
)的圖象,只需將y=f(x)的圖象( 。
A、向右平移
π
3
個單位
B、向左平移
π
3
個單位
C、向右平移
π
6
個單位
D、向左平移
π
6
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面使用類比推理,得到正確結(jié)論的是( 。
A、“若a•3=b•3,則a=b”類推出“若a•0=b•0,則a=b”
B、“若(a+b)c=ac+bc,”類推出“(a•b)c=ac•bc”
C、“若(a+b)c=ac+bc”類推出“
a+b
c
=
a
c
+
b
c
(c≠0)”
D、“(ab)n=anbn”類推出“(a+b)n=an+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中an>0,q=2,a3•a11=16,則a5=( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=2cos(θ+
π
3
).以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是
x=-1+tcos
3
y=2+tsin
3
(t為參數(shù)),設(shè)點P(-1,2).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線l的參數(shù)方程化為普通方程;
(Ⅱ)設(shè)直線l與曲線C相交于M,N兩點,求的值|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC,點P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為
 

查看答案和解析>>

同步練習(xí)冊答案