精英家教網 > 高中數學 > 題目詳情

已知函數

(Ⅰ)若函數f(x)是定義域上的單調函數,求實數a的最小值;

(Ⅱ)方程有兩個不同的實數解,求實數a的取值范圍;

(Ⅲ)在函數f(x)的圖象上是否存在不同兩點A(x1,y1),B(x2,y2),線段AB的中點的橫坐標為x0,有成立?若存在,請求出x0的值;若不存在,請說明理由.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=a-
1|2x-b|
是偶函數,a為實常數.
(1)求b的值;
(2)當a=1時,是否存在m,n(n>m>o)使得函數y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x(x-
12
)的定義域為(n,n+1)(n∈N*),f(x)的函數值中所有整數的個數記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數)都成立,求實數l的最小值.

查看答案和解析>>

科目:高中數學 來源:2014屆湖北孝感高中高三年級九月調研考試理科數學試卷(解析版) 題型:解答題

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知,的部分函數值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數,使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.

我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知,的部分函數值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數,使得,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.

我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知的部分函數值由下表給出,

 求證:

(Ⅲ)定義集合

請問:是否存在常數,使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案