【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.

(1)求橢圓C的方程;

(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當,求k的取值范圍.

【答案】(1);(2)

【解析】

(1)由e,2b=2,a2b2c2構造方程組,解出a,b即可得橢圓方程;(2)設l1的方程為ykx-1代入橢圓方程,求出M的坐標,可得|DM|,用代替k,可得|DN|,求出△DMN的面積S,可得,解不等式>可得k的取值范圍.

(1)設橢圓C的半焦距為c,則由題意得又a2=b2+c2,解得a=2,b=1,

橢圓方程為+y2=1.

(2)由(1)知,橢圓C的方程為+y2=1,

所以橢圓C與y軸負半軸交點為D(0,-1).

因為l1的斜率存在,所以設l1的方程為y=kx-1.

代入+y2=1,得M,

從而|DM|=.

用-代替k得|DN|=.

所以DMN的面積S=·×.

,

因為>,即>

整理得4k4-k2-14<0,解得-<k2<2,

所以0<k2<2,即-<k<0或0<k<.

從而k的取值范圍為(-,0)∪(0,).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有兩個題目,該學生答對、兩題的概率分別為、,兩題全部答對方可進入面試.面試要回答甲、乙兩個問題,該學生答對這兩個問題的概率均為,至少答對一個問題即可被聘用,若只答對一問聘為職員,答對兩問聘為助理(假設每個環(huán)節(jié)的每個題目或問題回答正確與否是相互獨立的).

1)求該學生被公司聘用的概率;

2)設該學生應聘結束后答對的題目或問題的總個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是減函數(shù).

(1)試確定a的值;

(2)已知數(shù)列,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底,,為常數(shù)且

(1)當時,討論函數(shù)在區(qū)間上的單調性;

(2)當時,若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓),以橢圓內一點為中點作弦,設線段的中垂線與橢圓相交于, 兩點.

(Ⅰ)求橢圓的離心率;

(Ⅱ)試判斷是否存在這樣的,使得, , 在同一個圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,正確命題的個數(shù)是( 。

①若2b=a+c,則a,b,c成等差數(shù)列;

a,b,c成等比數(shù)列的充要條件是b2=ac;

③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;

④若,則

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量與向量的對應關系用表示.

(1) 證明:對于任意向量及常數(shù)m、n,恒有;

(2) 證明:對于任意向量,;

(3) 證明:對于任意向量,若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中, 正確說法的個數(shù)是( )

①在用列聯(lián)表分析兩個分類變量之間的關系時,隨機變量的觀測值越大,說明“AB有關系的可信度越大

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,將其變換后得到線性方程,則,的值分別是和 0.3

③已知兩個變量具有線性相關關系,其回歸直線方程為,若,,則

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案