【題目】如圖,分別過橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足, 已知與軸重合時(shí), .
(1)求橢圓的方程;
(2)是否存在定點(diǎn)使得為定值,若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,
說明理由.
【答案】(1);(2)存在,,,.
【解析】
試題分析:(1)當(dāng)與軸重合時(shí),垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).
試題解析:當(dāng)與軸重合時(shí), , 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或;
當(dāng)直線斜率存在時(shí),設(shè)斜率分別為, 設(shè) 由, 得:
, 所以: ,, 則:
. 同理:, 因?yàn)?/span>
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或也滿足此方程,所以點(diǎn)在橢圓上.存在點(diǎn)和點(diǎn),使得為定值,定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A.綜合法是由因?qū)Ч樛谱C法
B.分析法是由執(zhí)果索因逆推證法
C.綜合法和分析法都是直接證法
D.綜合法和分析法在同一題的證明中不可能同時(shí)使用
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場預(yù)算用5600元購買單價(jià)為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍
(Ⅰ)設(shè)買鉀肥噸,買氮肥噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(Ⅱ)已知,是坐標(biāo)原點(diǎn), 在(Ⅰ)中的可行域內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某班學(xué)生的身高情況,決定從50名學(xué)生(已編號(hào)為00~49)中選取10名進(jìn)行測量,利用隨機(jī)數(shù)法進(jìn)行抽取,得到如下4組編號(hào),則正確的編號(hào)是( )
A.26,94,29,27,43,99,55,19,81,06B.20,26,31,40,24,36,19,34,03,48
C.02,38,22,41,38,24,49,44,03,11D.04,00,45,32,44,22,04,11,08,49
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面五邊形是軸對(duì)稱圖形(如圖1),BC為對(duì)稱軸,AD⊥CD,AD=AB=1,,將此五邊形沿BC折疊,使平面ABCD⊥平面BCEF,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問題.
(1)證明:AF∥平面DEC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直,.
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使平面?若存在,求出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在整數(shù)集中,被4除所得余數(shù)為的所有整數(shù)組成一個(gè)“類”,記為,則下列結(jié)論正確的為 .
①2014;
②-1;
③;
④命題“整數(shù)滿足,則”的原命題與逆命題都正確;
⑤“整數(shù)屬于同一類”的充要條件是“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】城市公交車的數(shù)量若太多則容易造成資源的浪費(fèi);若太少又難以滿足乘客需求.某市公交公司在某站臺(tái)的60名候車乘客中隨機(jī)抽取15人,將他們的候車時(shí)間作為樣本分成5組,如下表所示(單位:分鐘):
組別 | 候車時(shí)間 | 人數(shù) |
一 |
| 2 |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中任選2人作進(jìn)一步的調(diào)查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在(為自然對(duì)數(shù)的底)時(shí)取得極值且有兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)記函數(shù)的兩個(gè)零點(diǎn)為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com