7.方程x2+7x+8=0的兩根為tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),則α+β=( 。
A.$\frac{π}{4}$B.-$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{π}{4}$或-$\frac{3π}{4}$

分析 根據(jù)根與系數(shù)的關(guān)系得出tanα+tanβ和tanαtanβ的值,計(jì)算tan(α+β),根據(jù)α、β的取值范圍求出α+β的值.

解答 解:方程x2+7x+8=0的兩根為tanα,tanβ,
∴$\left\{\begin{array}{l}{tanα+tanβ=-7}\\{tanαtanβ=8}\end{array}\right.$,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{-7}{1-8}$=1,
且tanα<0,tanβ<0;
又α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴α+β∈(-π,0),
∴α+β=-$\frac{3π}{4}$.
故選:B.

點(diǎn)評 本題考查了兩角和的正切值公式與應(yīng)用問題,也考查了根與系數(shù)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.經(jīng)過A(-2,3),B(4,-1)的直線方程為( 。
A.2x-4y+7=0B.2x+3y-5=0C.2x-3y+5=0D.3x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為F(1,0),過焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),過AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,若|AB|=6,則點(diǎn)P的坐標(biāo)為($\frac{1}{2}$,$±\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.為了增強(qiáng)環(huán)保意識(shí),某校從男生中隨機(jī)抽取60人,從女生中隨機(jī)抽取50人,參加環(huán)保知識(shí)測試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(參考數(shù)據(jù):X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)
優(yōu)秀非優(yōu)秀總計(jì)
男生402060
女生203050
總計(jì)6050110
P(X2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
則認(rèn)為環(huán)保知識(shí)測試成績是否優(yōu)秀與性別有關(guān)的把握為( 。
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在平行六面體ABCD-A${\;}_{{1}_{\;}}$B1C1D1中,$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+2y$\overrightarrow{BC}$+3z$\overrightarrow{{C}_{1}C}$,則x+y+z=(  )
A.1B.$\frac{7}{6}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)某班共有學(xué)生50人,在一次數(shù)學(xué)測試中,要搜索出測試中及格(60分以上)的成績,試設(shè)計(jì)一個(gè)算法,并畫出程序框圖.
(2)目前我省高考科目為文科考:語文,數(shù)學(xué)(文科),英語,文科綜合(政治、歷史、地理);理科考:語文,數(shù)學(xué)(理科),英語,理科綜合(物理、化學(xué)、生物).請畫出我省高考科目結(jié)構(gòu)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出的T的值是( 。
A.47B.48C.49D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列點(diǎn)不在直線$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))上的是(  )
A.(-1,2)B.(2,-1)C.(3,-2)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{an}滿足a1=1,a2=2,2an+1=an+an+2,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,則數(shù)列{bn}的前5項(xiàng)和等于(  )
A.1B.$\frac{5}{6}$C.$\frac{1}{6}$D.$\frac{1}{30}$

查看答案和解析>>

同步練習(xí)冊答案