若方程
x2
9-k
+
y2
k-1
=1表示焦點在y軸上的橢圓,則k的取值范圍是
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:方程表示焦點在y軸的橢圓,可得x2、y2的分母均為正數(shù),且y2的分母較大,由此建立關(guān)于k的不等式,解之即得K的取值范圍.
解答: 解:∵方程
x2
9-k
+
y2
k-1
=1表示焦點在y軸上的橢圓,
∴k-1>9-k>0,
∴5<k<9.
故答案為:(5,9).
點評:本題給出橢圓的焦點在y軸上,求參數(shù)K的范圍.著重考查了橢圓的標(biāo)準(zhǔn)方程與簡單性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

與函數(shù)y=x有相同圖象的一個函數(shù)是( 。
A、y=
x2
B、y=(
x
2
C、y=logaax(a>o,a≠1)
D、y=
x2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,c滿足a+b+c=1,a2+b2+c2=1,則a+b的取值范圍是( 。
A、[-1,1]
B、[-
1
3
,0]
C、[0,
4
3
]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
2m
-
y2
m
=1
的一條準(zhǔn)線方程是x=1,則實數(shù)m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ的圖象如圖所示,則該函數(shù)的解析式可能是( 。
A、y=
4
5
sin(
4
5
x+
1
5
B、y=
3
2
sin(2x+
1
5
C、y=
4
5
sin(
4
5
x-
1
5
D、y=
4
5
sin(2x-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相交,則雙曲線C離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={t|2-a<t<2+a,a>0},B表示使方程
x2
2t-1
+
y2
2t+7
=1為雙曲線的實數(shù)t的集合.
(1)當(dāng)a=3時,判斷“t∈A”是“t∈B”的什么條件?
(2)若“t∈A”是“t∈B”的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某算法的流程圖如圖所示,則輸出n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-y-2=0,l2:x+y+3=0,點M(3,2).
(1)求直線l1關(guān)于點M對稱的直線方程;
(2)過點M作直線l分別交l1,l2于A,B兩點,且MA=MB,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案