分析 (1)連接BD,證明:BN⊥CD,PD⊥BN,即可證明BN⊥平面PCD;
(2)假設(shè)線段PC上存在一點(diǎn)H,連接MH,DH,MD,可得∠MHD為MH與平面PCD所成的角,在直角三角形MDH中,$DM=\sqrt{3}$,當(dāng)DH最小,即DH⊥PC時(shí),∠DHM最大,利用條件求出CH,即可得出結(jié)論.
解答 (1)證明:連接BD,
∵四邊形ABCD為菱形,∠BCD=∠BAD=60°
∴△BCD為正三角形,∵N為CD中點(diǎn),所以BN⊥CD…(2分)
∵PD⊥平面ABCD,BN?平面ABCD,∴PD⊥BN,….(4分)
又PD?平面PCD,CD?平面PCD,CD∩PD=D,∴BN⊥平面PCD…6 分
(2)解:假設(shè)線段PC上存在一點(diǎn)H,連接MH,DH,MD,
MBDN為平行四邊形,∴MD∥BN,
由(1)BN⊥平面PCD∴MD⊥平面PCD,∴∠MHD為MH與平面PCD所成的角…(9分)
在直角三角形MDH中,$DM=\sqrt{3}$,當(dāng)DH最小,即DH⊥PC時(shí),∠DHM最大,
$tan∠DHM=\frac{DM}{DH}=\frac{{\sqrt{3}}}{DH}=\frac{{\sqrt{6}}}{2}$,
∴$DH=\sqrt{2}$
在Rt△DHC中$DH=\sqrt{2},CD=2$,∴$CH=\sqrt{2}$…(11分)
∴線段PC上存在點(diǎn)H,當(dāng)$CH=\sqrt{2}$時(shí),使MH與平面PCD所成最大角的正切值為$\frac{{\sqrt{6}}}{2}$…(12分)
點(diǎn)評 本題考查線面垂直的判定,考查線面角,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cosx | B. | -cosx | C. | sinx+xcosx | D. | sinx-xcosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}π$ | B. | $3\sqrt{3}π$ | C. | $\frac{{8\sqrt{2}}}{3}π$ | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個(gè)單位長度 | B. | 向右平移$\frac{π}{3}$個(gè)單位長度 | ||
C. | 向右平移$\frac{π}{6}$個(gè)單位長度 | D. | 向左平移$\frac{π}{6}$個(gè)單位長度 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com